Step |
Hyp |
Ref |
Expression |
1 |
|
dib1dim2.b |
|- B = ( Base ` K ) |
2 |
|
dib1dim2.h |
|- H = ( LHyp ` K ) |
3 |
|
dib1dim2.t |
|- T = ( ( LTrn ` K ) ` W ) |
4 |
|
dib1dim2.r |
|- R = ( ( trL ` K ) ` W ) |
5 |
|
dib1dim2.o |
|- O = ( h e. T |-> ( _I |` B ) ) |
6 |
|
dib1dim2.u |
|- U = ( ( DVecH ` K ) ` W ) |
7 |
|
dib1dim2.i |
|- I = ( ( DIsoB ` K ) ` W ) |
8 |
|
dib1dim2.n |
|- N = ( LSpan ` U ) |
9 |
|
df-rab |
|- { u e. ( T X. ( ( TEndo ` K ) ` W ) ) | E. v e. ( ( TEndo ` K ) ` W ) u = <. ( v ` F ) , O >. } = { u | ( u e. ( T X. ( ( TEndo ` K ) ` W ) ) /\ E. v e. ( ( TEndo ` K ) ` W ) u = <. ( v ` F ) , O >. ) } |
10 |
|
eqid |
|- ( ( TEndo ` K ) ` W ) = ( ( TEndo ` K ) ` W ) |
11 |
1 2 3 4 10 5 7
|
dib1dim |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( I ` ( R ` F ) ) = { u e. ( T X. ( ( TEndo ` K ) ` W ) ) | E. v e. ( ( TEndo ` K ) ` W ) u = <. ( v ` F ) , O >. } ) |
12 |
|
eqid |
|- ( Scalar ` U ) = ( Scalar ` U ) |
13 |
|
eqid |
|- ( Base ` ( Scalar ` U ) ) = ( Base ` ( Scalar ` U ) ) |
14 |
2 10 6 12 13
|
dvhbase |
|- ( ( K e. HL /\ W e. H ) -> ( Base ` ( Scalar ` U ) ) = ( ( TEndo ` K ) ` W ) ) |
15 |
14
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( Base ` ( Scalar ` U ) ) = ( ( TEndo ` K ) ` W ) ) |
16 |
15
|
rexeqdv |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( E. v e. ( Base ` ( Scalar ` U ) ) u = ( v ( .s ` U ) <. F , O >. ) <-> E. v e. ( ( TEndo ` K ) ` W ) u = ( v ( .s ` U ) <. F , O >. ) ) ) |
17 |
|
simpll |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ v e. ( ( TEndo ` K ) ` W ) ) -> ( K e. HL /\ W e. H ) ) |
18 |
|
simpr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ v e. ( ( TEndo ` K ) ` W ) ) -> v e. ( ( TEndo ` K ) ` W ) ) |
19 |
|
simplr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ v e. ( ( TEndo ` K ) ` W ) ) -> F e. T ) |
20 |
1 2 3 10 5
|
tendo0cl |
|- ( ( K e. HL /\ W e. H ) -> O e. ( ( TEndo ` K ) ` W ) ) |
21 |
20
|
ad2antrr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ v e. ( ( TEndo ` K ) ` W ) ) -> O e. ( ( TEndo ` K ) ` W ) ) |
22 |
|
eqid |
|- ( .s ` U ) = ( .s ` U ) |
23 |
2 3 10 6 22
|
dvhopvsca |
|- ( ( ( K e. HL /\ W e. H ) /\ ( v e. ( ( TEndo ` K ) ` W ) /\ F e. T /\ O e. ( ( TEndo ` K ) ` W ) ) ) -> ( v ( .s ` U ) <. F , O >. ) = <. ( v ` F ) , ( v o. O ) >. ) |
24 |
17 18 19 21 23
|
syl13anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ v e. ( ( TEndo ` K ) ` W ) ) -> ( v ( .s ` U ) <. F , O >. ) = <. ( v ` F ) , ( v o. O ) >. ) |
25 |
1 2 3 10 5
|
tendo0mulr |
|- ( ( ( K e. HL /\ W e. H ) /\ v e. ( ( TEndo ` K ) ` W ) ) -> ( v o. O ) = O ) |
26 |
25
|
adantlr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ v e. ( ( TEndo ` K ) ` W ) ) -> ( v o. O ) = O ) |
27 |
26
|
opeq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ v e. ( ( TEndo ` K ) ` W ) ) -> <. ( v ` F ) , ( v o. O ) >. = <. ( v ` F ) , O >. ) |
28 |
24 27
|
eqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ v e. ( ( TEndo ` K ) ` W ) ) -> ( v ( .s ` U ) <. F , O >. ) = <. ( v ` F ) , O >. ) |
29 |
28
|
eqeq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ v e. ( ( TEndo ` K ) ` W ) ) -> ( u = ( v ( .s ` U ) <. F , O >. ) <-> u = <. ( v ` F ) , O >. ) ) |
30 |
29
|
rexbidva |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( E. v e. ( ( TEndo ` K ) ` W ) u = ( v ( .s ` U ) <. F , O >. ) <-> E. v e. ( ( TEndo ` K ) ` W ) u = <. ( v ` F ) , O >. ) ) |
31 |
2 3 10
|
tendocl |
|- ( ( ( K e. HL /\ W e. H ) /\ v e. ( ( TEndo ` K ) ` W ) /\ F e. T ) -> ( v ` F ) e. T ) |
32 |
31
|
3expa |
|- ( ( ( ( K e. HL /\ W e. H ) /\ v e. ( ( TEndo ` K ) ` W ) ) /\ F e. T ) -> ( v ` F ) e. T ) |
33 |
32
|
an32s |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ v e. ( ( TEndo ` K ) ` W ) ) -> ( v ` F ) e. T ) |
34 |
|
opelxpi |
|- ( ( ( v ` F ) e. T /\ O e. ( ( TEndo ` K ) ` W ) ) -> <. ( v ` F ) , O >. e. ( T X. ( ( TEndo ` K ) ` W ) ) ) |
35 |
33 21 34
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ v e. ( ( TEndo ` K ) ` W ) ) -> <. ( v ` F ) , O >. e. ( T X. ( ( TEndo ` K ) ` W ) ) ) |
36 |
|
eleq1a |
|- ( <. ( v ` F ) , O >. e. ( T X. ( ( TEndo ` K ) ` W ) ) -> ( u = <. ( v ` F ) , O >. -> u e. ( T X. ( ( TEndo ` K ) ` W ) ) ) ) |
37 |
35 36
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T ) /\ v e. ( ( TEndo ` K ) ` W ) ) -> ( u = <. ( v ` F ) , O >. -> u e. ( T X. ( ( TEndo ` K ) ` W ) ) ) ) |
38 |
37
|
rexlimdva |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( E. v e. ( ( TEndo ` K ) ` W ) u = <. ( v ` F ) , O >. -> u e. ( T X. ( ( TEndo ` K ) ` W ) ) ) ) |
39 |
38
|
pm4.71rd |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( E. v e. ( ( TEndo ` K ) ` W ) u = <. ( v ` F ) , O >. <-> ( u e. ( T X. ( ( TEndo ` K ) ` W ) ) /\ E. v e. ( ( TEndo ` K ) ` W ) u = <. ( v ` F ) , O >. ) ) ) |
40 |
16 30 39
|
3bitrd |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( E. v e. ( Base ` ( Scalar ` U ) ) u = ( v ( .s ` U ) <. F , O >. ) <-> ( u e. ( T X. ( ( TEndo ` K ) ` W ) ) /\ E. v e. ( ( TEndo ` K ) ` W ) u = <. ( v ` F ) , O >. ) ) ) |
41 |
40
|
abbidv |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> { u | E. v e. ( Base ` ( Scalar ` U ) ) u = ( v ( .s ` U ) <. F , O >. ) } = { u | ( u e. ( T X. ( ( TEndo ` K ) ` W ) ) /\ E. v e. ( ( TEndo ` K ) ` W ) u = <. ( v ` F ) , O >. ) } ) |
42 |
9 11 41
|
3eqtr4a |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( I ` ( R ` F ) ) = { u | E. v e. ( Base ` ( Scalar ` U ) ) u = ( v ( .s ` U ) <. F , O >. ) } ) |
43 |
|
simpl |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( K e. HL /\ W e. H ) ) |
44 |
2 6 43
|
dvhlmod |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> U e. LMod ) |
45 |
|
simpr |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> F e. T ) |
46 |
20
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> O e. ( ( TEndo ` K ) ` W ) ) |
47 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
48 |
2 3 10 6 47
|
dvhelvbasei |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ O e. ( ( TEndo ` K ) ` W ) ) ) -> <. F , O >. e. ( Base ` U ) ) |
49 |
43 45 46 48
|
syl12anc |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> <. F , O >. e. ( Base ` U ) ) |
50 |
12 13 47 22 8
|
lspsn |
|- ( ( U e. LMod /\ <. F , O >. e. ( Base ` U ) ) -> ( N ` { <. F , O >. } ) = { u | E. v e. ( Base ` ( Scalar ` U ) ) u = ( v ( .s ` U ) <. F , O >. ) } ) |
51 |
44 49 50
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( N ` { <. F , O >. } ) = { u | E. v e. ( Base ` ( Scalar ` U ) ) u = ( v ( .s ` U ) <. F , O >. ) } ) |
52 |
42 51
|
eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( I ` ( R ` F ) ) = ( N ` { <. F , O >. } ) ) |