Metamath Proof Explorer


Theorem cdlemn3

Description: Part of proof of Lemma N of Crawley p. 121 line 31. (Contributed by NM, 21-Feb-2014)

Ref Expression
Hypotheses cdlemn3.l = ( le ‘ 𝐾 )
cdlemn3.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemn3.p 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
cdlemn3.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemn3.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemn3.f 𝐹 = ( 𝑇 ( 𝑃 ) = 𝑄 )
cdlemn3.g 𝐺 = ( 𝑇 ( 𝑃 ) = 𝑅 )
cdlemn3.j 𝐽 = ( 𝑇 ( 𝑄 ) = 𝑅 )
Assertion cdlemn3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) → ( 𝐽𝐹 ) = 𝐺 )

Proof

Step Hyp Ref Expression
1 cdlemn3.l = ( le ‘ 𝐾 )
2 cdlemn3.a 𝐴 = ( Atoms ‘ 𝐾 )
3 cdlemn3.p 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
4 cdlemn3.h 𝐻 = ( LHyp ‘ 𝐾 )
5 cdlemn3.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
6 cdlemn3.f 𝐹 = ( 𝑇 ( 𝑃 ) = 𝑄 )
7 cdlemn3.g 𝐺 = ( 𝑇 ( 𝑃 ) = 𝑅 )
8 cdlemn3.j 𝐽 = ( 𝑇 ( 𝑄 ) = 𝑅 )
9 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
10 1 2 4 3 lhpocnel2 ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
11 10 3ad2ant1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
12 simp2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
13 1 2 4 5 6 ltrniotacl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → 𝐹𝑇 )
14 9 11 12 13 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) → 𝐹𝑇 )
15 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
16 15 4 5 ltrn1o ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) )
17 9 14 16 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) → 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) )
18 f1of ( 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) → 𝐹 : ( Base ‘ 𝐾 ) ⟶ ( Base ‘ 𝐾 ) )
19 17 18 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) → 𝐹 : ( Base ‘ 𝐾 ) ⟶ ( Base ‘ 𝐾 ) )
20 11 simpld ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) → 𝑃𝐴 )
21 15 2 atbase ( 𝑃𝐴𝑃 ∈ ( Base ‘ 𝐾 ) )
22 20 21 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) )
23 fvco3 ( ( 𝐹 : ( Base ‘ 𝐾 ) ⟶ ( Base ‘ 𝐾 ) ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐽𝐹 ) ‘ 𝑃 ) = ( 𝐽 ‘ ( 𝐹𝑃 ) ) )
24 19 22 23 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) → ( ( 𝐽𝐹 ) ‘ 𝑃 ) = ( 𝐽 ‘ ( 𝐹𝑃 ) ) )
25 1 2 4 5 6 ltrniotaval ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝐹𝑃 ) = 𝑄 )
26 9 11 12 25 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) → ( 𝐹𝑃 ) = 𝑄 )
27 26 fveq2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) → ( 𝐽 ‘ ( 𝐹𝑃 ) ) = ( 𝐽𝑄 ) )
28 1 2 4 5 8 ltrniotaval ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) → ( 𝐽𝑄 ) = 𝑅 )
29 24 27 28 3eqtrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) → ( ( 𝐽𝐹 ) ‘ 𝑃 ) = 𝑅 )
30 1 2 4 5 7 ltrniotaval ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) → ( 𝐺𝑃 ) = 𝑅 )
31 11 30 syld3an2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) → ( 𝐺𝑃 ) = 𝑅 )
32 29 31 eqtr4d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) → ( ( 𝐽𝐹 ) ‘ 𝑃 ) = ( 𝐺𝑃 ) )
33 1 2 4 5 8 ltrniotacl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) → 𝐽𝑇 )
34 4 5 ltrnco ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐽𝑇𝐹𝑇 ) → ( 𝐽𝐹 ) ∈ 𝑇 )
35 9 33 14 34 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) → ( 𝐽𝐹 ) ∈ 𝑇 )
36 1 2 4 5 7 ltrniotacl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) → 𝐺𝑇 )
37 11 36 syld3an2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) → 𝐺𝑇 )
38 1 2 4 5 ltrneq3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝐽𝐹 ) ∈ 𝑇𝐺𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( ( ( 𝐽𝐹 ) ‘ 𝑃 ) = ( 𝐺𝑃 ) ↔ ( 𝐽𝐹 ) = 𝐺 ) )
39 9 35 37 11 38 syl121anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) → ( ( ( 𝐽𝐹 ) ‘ 𝑃 ) = ( 𝐺𝑃 ) ↔ ( 𝐽𝐹 ) = 𝐺 ) )
40 32 39 mpbid ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) → ( 𝐽𝐹 ) = 𝐺 )