Metamath Proof Explorer


Theorem ltrneq3

Description: Two translations agree at any atom not under the fiducial co-atom W iff they are equal. (Contributed by NM, 25-Jul-2013)

Ref Expression
Hypotheses cdlemd.l = ( le ‘ 𝐾 )
cdlemd.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemd.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemd.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
Assertion ltrneq3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ↔ 𝐹 = 𝐺 ) )

Proof

Step Hyp Ref Expression
1 cdlemd.l = ( le ‘ 𝐾 )
2 cdlemd.a 𝐴 = ( Atoms ‘ 𝐾 )
3 cdlemd.h 𝐻 = ( LHyp ‘ 𝐾 )
4 cdlemd.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
5 simpl1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
6 simpl2l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ) → 𝐹𝑇 )
7 simpl2r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ) → 𝐺𝑇 )
8 simpl3 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
9 simpr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ) → ( 𝐹𝑃 ) = ( 𝐺𝑃 ) )
10 1 2 3 4 cdlemd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ) → 𝐹 = 𝐺 )
11 5 6 7 8 9 10 syl311anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ) → 𝐹 = 𝐺 )
12 fveq1 ( 𝐹 = 𝐺 → ( 𝐹𝑃 ) = ( 𝐺𝑃 ) )
13 12 adantl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ 𝐹 = 𝐺 ) → ( 𝐹𝑃 ) = ( 𝐺𝑃 ) )
14 11 13 impbida ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( ( 𝐹𝑃 ) = ( 𝐺𝑃 ) ↔ 𝐹 = 𝐺 ) )