Metamath Proof Explorer


Theorem ltrneq3

Description: Two translations agree at any atom not under the fiducial co-atom W iff they are equal. (Contributed by NM, 25-Jul-2013)

Ref Expression
Hypotheses cdlemd.l ˙=K
cdlemd.a A=AtomsK
cdlemd.h H=LHypK
cdlemd.t T=LTrnKW
Assertion ltrneq3 KHLWHFTGTPA¬P˙WFP=GPF=G

Proof

Step Hyp Ref Expression
1 cdlemd.l ˙=K
2 cdlemd.a A=AtomsK
3 cdlemd.h H=LHypK
4 cdlemd.t T=LTrnKW
5 simpl1 KHLWHFTGTPA¬P˙WFP=GPKHLWH
6 simpl2l KHLWHFTGTPA¬P˙WFP=GPFT
7 simpl2r KHLWHFTGTPA¬P˙WFP=GPGT
8 simpl3 KHLWHFTGTPA¬P˙WFP=GPPA¬P˙W
9 simpr KHLWHFTGTPA¬P˙WFP=GPFP=GP
10 1 2 3 4 cdlemd KHLWHFTGTPA¬P˙WFP=GPF=G
11 5 6 7 8 9 10 syl311anc KHLWHFTGTPA¬P˙WFP=GPF=G
12 fveq1 F=GFP=GP
13 12 adantl KHLWHFTGTPA¬P˙WF=GFP=GP
14 11 13 impbida KHLWHFTGTPA¬P˙WFP=GPF=G