Metamath Proof Explorer


Theorem cdlemn3

Description: Part of proof of Lemma N of Crawley p. 121 line 31. (Contributed by NM, 21-Feb-2014)

Ref Expression
Hypotheses cdlemn3.l ˙ = K
cdlemn3.a A = Atoms K
cdlemn3.p P = oc K W
cdlemn3.h H = LHyp K
cdlemn3.t T = LTrn K W
cdlemn3.f F = ι h T | h P = Q
cdlemn3.g G = ι h T | h P = R
cdlemn3.j J = ι h T | h Q = R
Assertion cdlemn3 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W J F = G

Proof

Step Hyp Ref Expression
1 cdlemn3.l ˙ = K
2 cdlemn3.a A = Atoms K
3 cdlemn3.p P = oc K W
4 cdlemn3.h H = LHyp K
5 cdlemn3.t T = LTrn K W
6 cdlemn3.f F = ι h T | h P = Q
7 cdlemn3.g G = ι h T | h P = R
8 cdlemn3.j J = ι h T | h Q = R
9 simp1 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W K HL W H
10 1 2 4 3 lhpocnel2 K HL W H P A ¬ P ˙ W
11 10 3ad2ant1 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W P A ¬ P ˙ W
12 simp2 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W Q A ¬ Q ˙ W
13 1 2 4 5 6 ltrniotacl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T
14 9 11 12 13 syl3anc K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W F T
15 eqid Base K = Base K
16 15 4 5 ltrn1o K HL W H F T F : Base K 1-1 onto Base K
17 9 14 16 syl2anc K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W F : Base K 1-1 onto Base K
18 f1of F : Base K 1-1 onto Base K F : Base K Base K
19 17 18 syl K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W F : Base K Base K
20 11 simpld K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W P A
21 15 2 atbase P A P Base K
22 20 21 syl K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W P Base K
23 fvco3 F : Base K Base K P Base K J F P = J F P
24 19 22 23 syl2anc K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W J F P = J F P
25 1 2 4 5 6 ltrniotaval K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F P = Q
26 9 11 12 25 syl3anc K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W F P = Q
27 26 fveq2d K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W J F P = J Q
28 1 2 4 5 8 ltrniotaval K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W J Q = R
29 24 27 28 3eqtrd K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W J F P = R
30 1 2 4 5 7 ltrniotaval K HL W H P A ¬ P ˙ W R A ¬ R ˙ W G P = R
31 11 30 syld3an2 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W G P = R
32 29 31 eqtr4d K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W J F P = G P
33 1 2 4 5 8 ltrniotacl K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W J T
34 4 5 ltrnco K HL W H J T F T J F T
35 9 33 14 34 syl3anc K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W J F T
36 1 2 4 5 7 ltrniotacl K HL W H P A ¬ P ˙ W R A ¬ R ˙ W G T
37 11 36 syld3an2 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W G T
38 1 2 4 5 ltrneq3 K HL W H J F T G T P A ¬ P ˙ W J F P = G P J F = G
39 9 35 37 11 38 syl121anc K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W J F P = G P J F = G
40 32 39 mpbid K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W J F = G