Metamath Proof Explorer


Theorem cdlemn3

Description: Part of proof of Lemma N of Crawley p. 121 line 31. (Contributed by NM, 21-Feb-2014)

Ref Expression
Hypotheses cdlemn3.l ˙=K
cdlemn3.a A=AtomsK
cdlemn3.p P=ocKW
cdlemn3.h H=LHypK
cdlemn3.t T=LTrnKW
cdlemn3.f F=ιhT|hP=Q
cdlemn3.g G=ιhT|hP=R
cdlemn3.j J=ιhT|hQ=R
Assertion cdlemn3 KHLWHQA¬Q˙WRA¬R˙WJF=G

Proof

Step Hyp Ref Expression
1 cdlemn3.l ˙=K
2 cdlemn3.a A=AtomsK
3 cdlemn3.p P=ocKW
4 cdlemn3.h H=LHypK
5 cdlemn3.t T=LTrnKW
6 cdlemn3.f F=ιhT|hP=Q
7 cdlemn3.g G=ιhT|hP=R
8 cdlemn3.j J=ιhT|hQ=R
9 simp1 KHLWHQA¬Q˙WRA¬R˙WKHLWH
10 1 2 4 3 lhpocnel2 KHLWHPA¬P˙W
11 10 3ad2ant1 KHLWHQA¬Q˙WRA¬R˙WPA¬P˙W
12 simp2 KHLWHQA¬Q˙WRA¬R˙WQA¬Q˙W
13 1 2 4 5 6 ltrniotacl KHLWHPA¬P˙WQA¬Q˙WFT
14 9 11 12 13 syl3anc KHLWHQA¬Q˙WRA¬R˙WFT
15 eqid BaseK=BaseK
16 15 4 5 ltrn1o KHLWHFTF:BaseK1-1 ontoBaseK
17 9 14 16 syl2anc KHLWHQA¬Q˙WRA¬R˙WF:BaseK1-1 ontoBaseK
18 f1of F:BaseK1-1 ontoBaseKF:BaseKBaseK
19 17 18 syl KHLWHQA¬Q˙WRA¬R˙WF:BaseKBaseK
20 11 simpld KHLWHQA¬Q˙WRA¬R˙WPA
21 15 2 atbase PAPBaseK
22 20 21 syl KHLWHQA¬Q˙WRA¬R˙WPBaseK
23 fvco3 F:BaseKBaseKPBaseKJFP=JFP
24 19 22 23 syl2anc KHLWHQA¬Q˙WRA¬R˙WJFP=JFP
25 1 2 4 5 6 ltrniotaval KHLWHPA¬P˙WQA¬Q˙WFP=Q
26 9 11 12 25 syl3anc KHLWHQA¬Q˙WRA¬R˙WFP=Q
27 26 fveq2d KHLWHQA¬Q˙WRA¬R˙WJFP=JQ
28 1 2 4 5 8 ltrniotaval KHLWHQA¬Q˙WRA¬R˙WJQ=R
29 24 27 28 3eqtrd KHLWHQA¬Q˙WRA¬R˙WJFP=R
30 1 2 4 5 7 ltrniotaval KHLWHPA¬P˙WRA¬R˙WGP=R
31 11 30 syld3an2 KHLWHQA¬Q˙WRA¬R˙WGP=R
32 29 31 eqtr4d KHLWHQA¬Q˙WRA¬R˙WJFP=GP
33 1 2 4 5 8 ltrniotacl KHLWHQA¬Q˙WRA¬R˙WJT
34 4 5 ltrnco KHLWHJTFTJFT
35 9 33 14 34 syl3anc KHLWHQA¬Q˙WRA¬R˙WJFT
36 1 2 4 5 7 ltrniotacl KHLWHPA¬P˙WRA¬R˙WGT
37 11 36 syld3an2 KHLWHQA¬Q˙WRA¬R˙WGT
38 1 2 4 5 ltrneq3 KHLWHJFTGTPA¬P˙WJFP=GPJF=G
39 9 35 37 11 38 syl121anc KHLWHQA¬Q˙WRA¬R˙WJFP=GPJF=G
40 32 39 mpbid KHLWHQA¬Q˙WRA¬R˙WJF=G