Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemn3.l |
|
2 |
|
cdlemn3.a |
|
3 |
|
cdlemn3.p |
|
4 |
|
cdlemn3.h |
|
5 |
|
cdlemn3.t |
|
6 |
|
cdlemn3.f |
|
7 |
|
cdlemn3.g |
|
8 |
|
cdlemn3.j |
|
9 |
|
simp1 |
|
10 |
1 2 4 3
|
lhpocnel2 |
|
11 |
10
|
3ad2ant1 |
|
12 |
|
simp2 |
|
13 |
1 2 4 5 6
|
ltrniotacl |
|
14 |
9 11 12 13
|
syl3anc |
|
15 |
|
eqid |
|
16 |
15 4 5
|
ltrn1o |
|
17 |
9 14 16
|
syl2anc |
|
18 |
|
f1of |
|
19 |
17 18
|
syl |
|
20 |
11
|
simpld |
|
21 |
15 2
|
atbase |
|
22 |
20 21
|
syl |
|
23 |
|
fvco3 |
|
24 |
19 22 23
|
syl2anc |
|
25 |
1 2 4 5 6
|
ltrniotaval |
|
26 |
9 11 12 25
|
syl3anc |
|
27 |
26
|
fveq2d |
|
28 |
1 2 4 5 8
|
ltrniotaval |
|
29 |
24 27 28
|
3eqtrd |
|
30 |
1 2 4 5 7
|
ltrniotaval |
|
31 |
11 30
|
syld3an2 |
|
32 |
29 31
|
eqtr4d |
|
33 |
1 2 4 5 8
|
ltrniotacl |
|
34 |
4 5
|
ltrnco |
|
35 |
9 33 14 34
|
syl3anc |
|
36 |
1 2 4 5 7
|
ltrniotacl |
|
37 |
11 36
|
syld3an2 |
|
38 |
1 2 4 5
|
ltrneq3 |
|
39 |
9 35 37 11 38
|
syl121anc |
|
40 |
32 39
|
mpbid |
|