Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
ltrniotaval
Next ⟩
ltrniotacnvval
Metamath Proof Explorer
Ascii
Unicode
Theorem
ltrniotaval
Description:
Value of the unique translation specified by a value.
(Contributed by
NM
, 21-Feb-2014)
Ref
Expression
Hypotheses
ltrniotaval.l
⊢
≤
˙
=
≤
K
ltrniotaval.a
⊢
A
=
Atoms
⁡
K
ltrniotaval.h
⊢
H
=
LHyp
⁡
K
ltrniotaval.t
⊢
T
=
LTrn
⁡
K
⁡
W
ltrniotaval.f
⊢
F
=
ι
f
∈
T
|
f
⁡
P
=
Q
Assertion
ltrniotaval
⊢
K
∈
HL
∧
W
∈
H
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
→
F
⁡
P
=
Q
Proof
Step
Hyp
Ref
Expression
1
ltrniotaval.l
⊢
≤
˙
=
≤
K
2
ltrniotaval.a
⊢
A
=
Atoms
⁡
K
3
ltrniotaval.h
⊢
H
=
LHyp
⁡
K
4
ltrniotaval.t
⊢
T
=
LTrn
⁡
K
⁡
W
5
ltrniotaval.f
⊢
F
=
ι
f
∈
T
|
f
⁡
P
=
Q
6
1
2
3
4
cdleme
⊢
K
∈
HL
∧
W
∈
H
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
→
∃!
f
∈
T
f
⁡
P
=
Q
7
nfriota1
⊢
Ⅎ
_
f
ι
f
∈
T
|
f
⁡
P
=
Q
8
5
7
nfcxfr
⊢
Ⅎ
_
f
F
9
nfcv
⊢
Ⅎ
_
f
P
10
8
9
nffv
⊢
Ⅎ
_
f
F
⁡
P
11
10
nfeq1
⊢
Ⅎ
f
F
⁡
P
=
Q
12
fveq1
⊢
f
=
F
→
f
⁡
P
=
F
⁡
P
13
12
eqeq1d
⊢
f
=
F
→
f
⁡
P
=
Q
↔
F
⁡
P
=
Q
14
11
5
13
riotaprop
⊢
∃!
f
∈
T
f
⁡
P
=
Q
→
F
∈
T
∧
F
⁡
P
=
Q
15
14
simprd
⊢
∃!
f
∈
T
f
⁡
P
=
Q
→
F
⁡
P
=
Q
16
6
15
syl
⊢
K
∈
HL
∧
W
∈
H
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
→
F
⁡
P
=
Q