Metamath Proof Explorer


Theorem ltrniotaval

Description: Value of the unique translation specified by a value. (Contributed by NM, 21-Feb-2014)

Ref Expression
Hypotheses ltrniotaval.l ˙ = K
ltrniotaval.a A = Atoms K
ltrniotaval.h H = LHyp K
ltrniotaval.t T = LTrn K W
ltrniotaval.f F = ι f T | f P = Q
Assertion ltrniotaval K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F P = Q

Proof

Step Hyp Ref Expression
1 ltrniotaval.l ˙ = K
2 ltrniotaval.a A = Atoms K
3 ltrniotaval.h H = LHyp K
4 ltrniotaval.t T = LTrn K W
5 ltrniotaval.f F = ι f T | f P = Q
6 1 2 3 4 cdleme K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W ∃! f T f P = Q
7 nfriota1 _ f ι f T | f P = Q
8 5 7 nfcxfr _ f F
9 nfcv _ f P
10 8 9 nffv _ f F P
11 10 nfeq1 f F P = Q
12 fveq1 f = F f P = F P
13 12 eqeq1d f = F f P = Q F P = Q
14 11 5 13 riotaprop ∃! f T f P = Q F T F P = Q
15 14 simprd ∃! f T f P = Q F P = Q
16 6 15 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F P = Q