Metamath Proof Explorer


Theorem ltrniotacnvval

Description: Converse value of the unique translation specified by a value. (Contributed by NM, 21-Feb-2014)

Ref Expression
Hypotheses ltrniotaval.l ˙ = K
ltrniotaval.a A = Atoms K
ltrniotaval.h H = LHyp K
ltrniotaval.t T = LTrn K W
ltrniotaval.f F = ι f T | f P = Q
Assertion ltrniotacnvval K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F -1 Q = P

Proof

Step Hyp Ref Expression
1 ltrniotaval.l ˙ = K
2 ltrniotaval.a A = Atoms K
3 ltrniotaval.h H = LHyp K
4 ltrniotaval.t T = LTrn K W
5 ltrniotaval.f F = ι f T | f P = Q
6 simp1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W K HL W H
7 1 2 3 4 5 ltrniotacl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T
8 eqid Base K = Base K
9 8 3 4 ltrn1o K HL W H F T F : Base K 1-1 onto Base K
10 6 7 9 syl2anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F : Base K 1-1 onto Base K
11 simp2l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P A
12 8 2 atbase P A P Base K
13 11 12 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Base K
14 10 13 jca K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F : Base K 1-1 onto Base K P Base K
15 1 2 3 4 5 ltrniotaval K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F P = Q
16 f1ocnvfv F : Base K 1-1 onto Base K P Base K F P = Q F -1 Q = P
17 14 15 16 sylc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F -1 Q = P