Metamath Proof Explorer


Theorem ltrniotacnvval

Description: Converse value of the unique translation specified by a value. (Contributed by NM, 21-Feb-2014)

Ref Expression
Hypotheses ltrniotaval.l ˙=K
ltrniotaval.a A=AtomsK
ltrniotaval.h H=LHypK
ltrniotaval.t T=LTrnKW
ltrniotaval.f F=ιfT|fP=Q
Assertion ltrniotacnvval KHLWHPA¬P˙WQA¬Q˙WF-1Q=P

Proof

Step Hyp Ref Expression
1 ltrniotaval.l ˙=K
2 ltrniotaval.a A=AtomsK
3 ltrniotaval.h H=LHypK
4 ltrniotaval.t T=LTrnKW
5 ltrniotaval.f F=ιfT|fP=Q
6 simp1 KHLWHPA¬P˙WQA¬Q˙WKHLWH
7 1 2 3 4 5 ltrniotacl KHLWHPA¬P˙WQA¬Q˙WFT
8 eqid BaseK=BaseK
9 8 3 4 ltrn1o KHLWHFTF:BaseK1-1 ontoBaseK
10 6 7 9 syl2anc KHLWHPA¬P˙WQA¬Q˙WF:BaseK1-1 ontoBaseK
11 simp2l KHLWHPA¬P˙WQA¬Q˙WPA
12 8 2 atbase PAPBaseK
13 11 12 syl KHLWHPA¬P˙WQA¬Q˙WPBaseK
14 10 13 jca KHLWHPA¬P˙WQA¬Q˙WF:BaseK1-1 ontoBaseKPBaseK
15 1 2 3 4 5 ltrniotaval KHLWHPA¬P˙WQA¬Q˙WFP=Q
16 f1ocnvfv F:BaseK1-1 ontoBaseKPBaseKFP=QF-1Q=P
17 14 15 16 sylc KHLWHPA¬P˙WQA¬Q˙WF-1Q=P