Metamath Proof Explorer


Theorem ltrniotacnvval

Description: Converse value of the unique translation specified by a value. (Contributed by NM, 21-Feb-2014)

Ref Expression
Hypotheses ltrniotaval.l = ( le ‘ 𝐾 )
ltrniotaval.a 𝐴 = ( Atoms ‘ 𝐾 )
ltrniotaval.h 𝐻 = ( LHyp ‘ 𝐾 )
ltrniotaval.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
ltrniotaval.f 𝐹 = ( 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 )
Assertion ltrniotacnvval ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝐹𝑄 ) = 𝑃 )

Proof

Step Hyp Ref Expression
1 ltrniotaval.l = ( le ‘ 𝐾 )
2 ltrniotaval.a 𝐴 = ( Atoms ‘ 𝐾 )
3 ltrniotaval.h 𝐻 = ( LHyp ‘ 𝐾 )
4 ltrniotaval.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
5 ltrniotaval.f 𝐹 = ( 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 )
6 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
7 1 2 3 4 5 ltrniotacl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → 𝐹𝑇 )
8 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
9 8 3 4 ltrn1o ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) )
10 6 7 9 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) )
11 simp2l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → 𝑃𝐴 )
12 8 2 atbase ( 𝑃𝐴𝑃 ∈ ( Base ‘ 𝐾 ) )
13 11 12 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) )
14 10 13 jca ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ) )
15 1 2 3 4 5 ltrniotaval ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝐹𝑃 ) = 𝑄 )
16 f1ocnvfv ( ( 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐹𝑃 ) = 𝑄 → ( 𝐹𝑄 ) = 𝑃 ) )
17 14 15 16 sylc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝐹𝑄 ) = 𝑃 )