Metamath Proof Explorer


Theorem ltrniotaval

Description: Value of the unique translation specified by a value. (Contributed by NM, 21-Feb-2014)

Ref Expression
Hypotheses ltrniotaval.l = ( le ‘ 𝐾 )
ltrniotaval.a 𝐴 = ( Atoms ‘ 𝐾 )
ltrniotaval.h 𝐻 = ( LHyp ‘ 𝐾 )
ltrniotaval.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
ltrniotaval.f 𝐹 = ( 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 )
Assertion ltrniotaval ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝐹𝑃 ) = 𝑄 )

Proof

Step Hyp Ref Expression
1 ltrniotaval.l = ( le ‘ 𝐾 )
2 ltrniotaval.a 𝐴 = ( Atoms ‘ 𝐾 )
3 ltrniotaval.h 𝐻 = ( LHyp ‘ 𝐾 )
4 ltrniotaval.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
5 ltrniotaval.f 𝐹 = ( 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 )
6 1 2 3 4 cdleme ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ∃! 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 )
7 nfriota1 𝑓 ( 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 )
8 5 7 nfcxfr 𝑓 𝐹
9 nfcv 𝑓 𝑃
10 8 9 nffv 𝑓 ( 𝐹𝑃 )
11 10 nfeq1 𝑓 ( 𝐹𝑃 ) = 𝑄
12 fveq1 ( 𝑓 = 𝐹 → ( 𝑓𝑃 ) = ( 𝐹𝑃 ) )
13 12 eqeq1d ( 𝑓 = 𝐹 → ( ( 𝑓𝑃 ) = 𝑄 ↔ ( 𝐹𝑃 ) = 𝑄 ) )
14 11 5 13 riotaprop ( ∃! 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 → ( 𝐹𝑇 ∧ ( 𝐹𝑃 ) = 𝑄 ) )
15 14 simprd ( ∃! 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 → ( 𝐹𝑃 ) = 𝑄 )
16 6 15 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝐹𝑃 ) = 𝑄 )