Step |
Hyp |
Ref |
Expression |
1 |
|
ltrniotaval.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
ltrniotaval.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
3 |
|
ltrniotaval.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
ltrniotaval.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
ltrniotaval.f |
⊢ 𝐹 = ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑃 ) = 𝑄 ) |
6 |
1 2 3 4
|
cdleme |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ∃! 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑃 ) = 𝑄 ) |
7 |
|
nfriota1 |
⊢ Ⅎ 𝑓 ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑃 ) = 𝑄 ) |
8 |
5 7
|
nfcxfr |
⊢ Ⅎ 𝑓 𝐹 |
9 |
|
nfcv |
⊢ Ⅎ 𝑓 𝑃 |
10 |
8 9
|
nffv |
⊢ Ⅎ 𝑓 ( 𝐹 ‘ 𝑃 ) |
11 |
10
|
nfeq1 |
⊢ Ⅎ 𝑓 ( 𝐹 ‘ 𝑃 ) = 𝑄 |
12 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑃 ) = ( 𝐹 ‘ 𝑃 ) ) |
13 |
12
|
eqeq1d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ 𝑃 ) = 𝑄 ↔ ( 𝐹 ‘ 𝑃 ) = 𝑄 ) ) |
14 |
11 5 13
|
riotaprop |
⊢ ( ∃! 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑃 ) = 𝑄 → ( 𝐹 ∈ 𝑇 ∧ ( 𝐹 ‘ 𝑃 ) = 𝑄 ) ) |
15 |
14
|
simprd |
⊢ ( ∃! 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑃 ) = 𝑄 → ( 𝐹 ‘ 𝑃 ) = 𝑄 ) |
16 |
6 15
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝐹 ‘ 𝑃 ) = 𝑄 ) |