Description: Properties of a restricted definite description operator. (Contributed by NM, 23-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | riotaprop.0 | ⊢ Ⅎ 𝑥 𝜓 | |
| riotaprop.1 | ⊢ 𝐵 = ( ℩ 𝑥 ∈ 𝐴 𝜑 ) | ||
| riotaprop.2 | ⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | riotaprop | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 → ( 𝐵 ∈ 𝐴 ∧ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotaprop.0 | ⊢ Ⅎ 𝑥 𝜓 | |
| 2 | riotaprop.1 | ⊢ 𝐵 = ( ℩ 𝑥 ∈ 𝐴 𝜑 ) | |
| 3 | riotaprop.2 | ⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜓 ) ) | |
| 4 | riotacl | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 → ( ℩ 𝑥 ∈ 𝐴 𝜑 ) ∈ 𝐴 ) | |
| 5 | 2 4 | eqeltrid | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 → 𝐵 ∈ 𝐴 ) |
| 6 | 2 | eqcomi | ⊢ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) = 𝐵 |
| 7 | nfriota1 | ⊢ Ⅎ 𝑥 ( ℩ 𝑥 ∈ 𝐴 𝜑 ) | |
| 8 | 2 7 | nfcxfr | ⊢ Ⅎ 𝑥 𝐵 |
| 9 | 8 1 3 | riota2f | ⊢ ( ( 𝐵 ∈ 𝐴 ∧ ∃! 𝑥 ∈ 𝐴 𝜑 ) → ( 𝜓 ↔ ( ℩ 𝑥 ∈ 𝐴 𝜑 ) = 𝐵 ) ) |
| 10 | 6 9 | mpbiri | ⊢ ( ( 𝐵 ∈ 𝐴 ∧ ∃! 𝑥 ∈ 𝐴 𝜑 ) → 𝜓 ) |
| 11 | 5 10 | mpancom | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 → 𝜓 ) |
| 12 | 5 11 | jca | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 → ( 𝐵 ∈ 𝐴 ∧ 𝜓 ) ) |