Metamath Proof Explorer


Theorem ltrniotaidvalN

Description: Value of the unique translation specified by identity value. (Contributed by NM, 25-Aug-2014) (New usage is discouraged.)

Ref Expression
Hypotheses ltrniotaidval.b 𝐵 = ( Base ‘ 𝐾 )
ltrniotaidval.l = ( le ‘ 𝐾 )
ltrniotaidval.a 𝐴 = ( Atoms ‘ 𝐾 )
ltrniotaidval.h 𝐻 = ( LHyp ‘ 𝐾 )
ltrniotaidval.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
ltrniotaidval.f 𝐹 = ( 𝑓𝑇 ( 𝑓𝑃 ) = 𝑃 )
Assertion ltrniotaidvalN ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → 𝐹 = ( I ↾ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 ltrniotaidval.b 𝐵 = ( Base ‘ 𝐾 )
2 ltrniotaidval.l = ( le ‘ 𝐾 )
3 ltrniotaidval.a 𝐴 = ( Atoms ‘ 𝐾 )
4 ltrniotaidval.h 𝐻 = ( LHyp ‘ 𝐾 )
5 ltrniotaidval.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
6 ltrniotaidval.f 𝐹 = ( 𝑓𝑇 ( 𝑓𝑃 ) = 𝑃 )
7 2 3 4 5 6 ltrniotaval ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( 𝐹𝑃 ) = 𝑃 )
8 7 3anidm23 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( 𝐹𝑃 ) = 𝑃 )
9 simpl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
10 2 3 4 5 6 ltrniotacl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → 𝐹𝑇 )
11 10 3anidm23 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → 𝐹𝑇 )
12 simpr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
13 1 2 3 4 5 ltrnideq ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( 𝐹 = ( I ↾ 𝐵 ) ↔ ( 𝐹𝑃 ) = 𝑃 ) )
14 9 11 12 13 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( 𝐹 = ( I ↾ 𝐵 ) ↔ ( 𝐹𝑃 ) = 𝑃 ) )
15 8 14 mpbird ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → 𝐹 = ( I ↾ 𝐵 ) )