Metamath Proof Explorer


Theorem ltrniotaidvalN

Description: Value of the unique translation specified by identity value. (Contributed by NM, 25-Aug-2014) (New usage is discouraged.)

Ref Expression
Hypotheses ltrniotaidval.b
|- B = ( Base ` K )
ltrniotaidval.l
|- .<_ = ( le ` K )
ltrniotaidval.a
|- A = ( Atoms ` K )
ltrniotaidval.h
|- H = ( LHyp ` K )
ltrniotaidval.t
|- T = ( ( LTrn ` K ) ` W )
ltrniotaidval.f
|- F = ( iota_ f e. T ( f ` P ) = P )
Assertion ltrniotaidvalN
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) -> F = ( _I |` B ) )

Proof

Step Hyp Ref Expression
1 ltrniotaidval.b
 |-  B = ( Base ` K )
2 ltrniotaidval.l
 |-  .<_ = ( le ` K )
3 ltrniotaidval.a
 |-  A = ( Atoms ` K )
4 ltrniotaidval.h
 |-  H = ( LHyp ` K )
5 ltrniotaidval.t
 |-  T = ( ( LTrn ` K ) ` W )
6 ltrniotaidval.f
 |-  F = ( iota_ f e. T ( f ` P ) = P )
7 2 3 4 5 6 ltrniotaval
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( F ` P ) = P )
8 7 3anidm23
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( F ` P ) = P )
9 simpl
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( K e. HL /\ W e. H ) )
10 2 3 4 5 6 ltrniotacl
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) -> F e. T )
11 10 3anidm23
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) -> F e. T )
12 simpr
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( P e. A /\ -. P .<_ W ) )
13 1 2 3 4 5 ltrnideq
 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( F = ( _I |` B ) <-> ( F ` P ) = P ) )
14 9 11 12 13 syl3anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( F = ( _I |` B ) <-> ( F ` P ) = P ) )
15 8 14 mpbird
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) -> F = ( _I |` B ) )