Metamath Proof Explorer


Theorem ltrniotaidvalN

Description: Value of the unique translation specified by identity value. (Contributed by NM, 25-Aug-2014) (New usage is discouraged.)

Ref Expression
Hypotheses ltrniotaidval.b B = Base K
ltrniotaidval.l ˙ = K
ltrniotaidval.a A = Atoms K
ltrniotaidval.h H = LHyp K
ltrniotaidval.t T = LTrn K W
ltrniotaidval.f F = ι f T | f P = P
Assertion ltrniotaidvalN K HL W H P A ¬ P ˙ W F = I B

Proof

Step Hyp Ref Expression
1 ltrniotaidval.b B = Base K
2 ltrniotaidval.l ˙ = K
3 ltrniotaidval.a A = Atoms K
4 ltrniotaidval.h H = LHyp K
5 ltrniotaidval.t T = LTrn K W
6 ltrniotaidval.f F = ι f T | f P = P
7 2 3 4 5 6 ltrniotaval K HL W H P A ¬ P ˙ W P A ¬ P ˙ W F P = P
8 7 3anidm23 K HL W H P A ¬ P ˙ W F P = P
9 simpl K HL W H P A ¬ P ˙ W K HL W H
10 2 3 4 5 6 ltrniotacl K HL W H P A ¬ P ˙ W P A ¬ P ˙ W F T
11 10 3anidm23 K HL W H P A ¬ P ˙ W F T
12 simpr K HL W H P A ¬ P ˙ W P A ¬ P ˙ W
13 1 2 3 4 5 ltrnideq K HL W H F T P A ¬ P ˙ W F = I B F P = P
14 9 11 12 13 syl3anc K HL W H P A ¬ P ˙ W F = I B F P = P
15 8 14 mpbird K HL W H P A ¬ P ˙ W F = I B