Metamath Proof Explorer


Theorem ltrniotavalbN

Description: Value of the unique translation specified by a value. (Contributed by NM, 10-Mar-2014) (New usage is discouraged.)

Ref Expression
Hypotheses ltrniotavalb.l ˙ = K
ltrniotavalb.a A = Atoms K
ltrniotavalb.h H = LHyp K
ltrniotavalb.t T = LTrn K W
Assertion ltrniotavalbN K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T F P = Q F = ι f T | f P = Q

Proof

Step Hyp Ref Expression
1 ltrniotavalb.l ˙ = K
2 ltrniotavalb.a A = Atoms K
3 ltrniotavalb.h H = LHyp K
4 ltrniotavalb.t T = LTrn K W
5 simpl1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T F P = Q K HL W H
6 simpl3 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T F P = Q F T
7 simpl2l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T F P = Q P A ¬ P ˙ W
8 simpl2r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T F P = Q Q A ¬ Q ˙ W
9 eqid ι f T | f P = Q = ι f T | f P = Q
10 1 2 3 4 9 ltrniotacl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W ι f T | f P = Q T
11 5 7 8 10 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T F P = Q ι f T | f P = Q T
12 simpr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T F P = Q F P = Q
13 1 2 3 4 9 ltrniotaval K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W ι f T | f P = Q P = Q
14 5 7 8 13 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T F P = Q ι f T | f P = Q P = Q
15 12 14 eqtr4d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T F P = Q F P = ι f T | f P = Q P
16 1 2 3 4 cdlemd K HL W H F T ι f T | f P = Q T P A ¬ P ˙ W F P = ι f T | f P = Q P F = ι f T | f P = Q
17 5 6 11 7 15 16 syl311anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T F P = Q F = ι f T | f P = Q
18 fveq1 F = ι f T | f P = Q F P = ι f T | f P = Q P
19 simp1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T K HL W H
20 simp2l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T P A ¬ P ˙ W
21 simp2r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T Q A ¬ Q ˙ W
22 19 20 21 13 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T ι f T | f P = Q P = Q
23 18 22 sylan9eqr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T F = ι f T | f P = Q F P = Q
24 17 23 impbida K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T F P = Q F = ι f T | f P = Q