Metamath Proof Explorer


Theorem cdlemeiota

Description: A translation is uniquely determined by one of its values. (Contributed by NM, 18-Apr-2013)

Ref Expression
Hypotheses cdlemg1c.l ˙=K
cdlemg1c.a A=AtomsK
cdlemg1c.h H=LHypK
cdlemg1c.t T=LTrnKW
Assertion cdlemeiota KHLWHPA¬P˙WFTF=ιfT|fP=FP

Proof

Step Hyp Ref Expression
1 cdlemg1c.l ˙=K
2 cdlemg1c.a A=AtomsK
3 cdlemg1c.h H=LHypK
4 cdlemg1c.t T=LTrnKW
5 eqidd KHLWHPA¬P˙WFTFP=FP
6 simp3 KHLWHPA¬P˙WFTFT
7 1 2 3 4 ltrnel KHLWHFTPA¬P˙WFPA¬FP˙W
8 7 3com23 KHLWHPA¬P˙WFTFPA¬FP˙W
9 1 2 3 4 cdleme KHLWHPA¬P˙WFPA¬FP˙W∃!fTfP=FP
10 8 9 syld3an3 KHLWHPA¬P˙WFT∃!fTfP=FP
11 fveq1 f=FfP=FP
12 11 eqeq1d f=FfP=FPFP=FP
13 12 riota2 FT∃!fTfP=FPFP=FPιfT|fP=FP=F
14 6 10 13 syl2anc KHLWHPA¬P˙WFTFP=FPιfT|fP=FP=F
15 5 14 mpbid KHLWHPA¬P˙WFTιfT|fP=FP=F
16 15 eqcomd KHLWHPA¬P˙WFTF=ιfT|fP=FP