Metamath Proof Explorer


Theorem cdlemeiota

Description: A translation is uniquely determined by one of its values. (Contributed by NM, 18-Apr-2013)

Ref Expression
Hypotheses cdlemg1c.l
|- .<_ = ( le ` K )
cdlemg1c.a
|- A = ( Atoms ` K )
cdlemg1c.h
|- H = ( LHyp ` K )
cdlemg1c.t
|- T = ( ( LTrn ` K ) ` W )
Assertion cdlemeiota
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ F e. T ) -> F = ( iota_ f e. T ( f ` P ) = ( F ` P ) ) )

Proof

Step Hyp Ref Expression
1 cdlemg1c.l
 |-  .<_ = ( le ` K )
2 cdlemg1c.a
 |-  A = ( Atoms ` K )
3 cdlemg1c.h
 |-  H = ( LHyp ` K )
4 cdlemg1c.t
 |-  T = ( ( LTrn ` K ) ` W )
5 eqidd
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ F e. T ) -> ( F ` P ) = ( F ` P ) )
6 simp3
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ F e. T ) -> F e. T )
7 1 2 3 4 ltrnel
 |-  ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( F ` P ) e. A /\ -. ( F ` P ) .<_ W ) )
8 7 3com23
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ F e. T ) -> ( ( F ` P ) e. A /\ -. ( F ` P ) .<_ W ) )
9 1 2 3 4 cdleme
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( ( F ` P ) e. A /\ -. ( F ` P ) .<_ W ) ) -> E! f e. T ( f ` P ) = ( F ` P ) )
10 8 9 syld3an3
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ F e. T ) -> E! f e. T ( f ` P ) = ( F ` P ) )
11 fveq1
 |-  ( f = F -> ( f ` P ) = ( F ` P ) )
12 11 eqeq1d
 |-  ( f = F -> ( ( f ` P ) = ( F ` P ) <-> ( F ` P ) = ( F ` P ) ) )
13 12 riota2
 |-  ( ( F e. T /\ E! f e. T ( f ` P ) = ( F ` P ) ) -> ( ( F ` P ) = ( F ` P ) <-> ( iota_ f e. T ( f ` P ) = ( F ` P ) ) = F ) )
14 6 10 13 syl2anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ F e. T ) -> ( ( F ` P ) = ( F ` P ) <-> ( iota_ f e. T ( f ` P ) = ( F ` P ) ) = F ) )
15 5 14 mpbid
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ F e. T ) -> ( iota_ f e. T ( f ` P ) = ( F ` P ) ) = F )
16 15 eqcomd
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ F e. T ) -> F = ( iota_ f e. T ( f ` P ) = ( F ` P ) ) )