| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemg1c.l |
|- .<_ = ( le ` K ) |
| 2 |
|
cdlemg1c.a |
|- A = ( Atoms ` K ) |
| 3 |
|
cdlemg1c.h |
|- H = ( LHyp ` K ) |
| 4 |
|
cdlemg1c.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 5 |
|
eqidd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ F e. T ) -> ( F ` P ) = ( F ` P ) ) |
| 6 |
|
simp3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ F e. T ) -> F e. T ) |
| 7 |
1 2 3 4
|
ltrnel |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( F ` P ) e. A /\ -. ( F ` P ) .<_ W ) ) |
| 8 |
7
|
3com23 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ F e. T ) -> ( ( F ` P ) e. A /\ -. ( F ` P ) .<_ W ) ) |
| 9 |
1 2 3 4
|
cdleme |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( ( F ` P ) e. A /\ -. ( F ` P ) .<_ W ) ) -> E! f e. T ( f ` P ) = ( F ` P ) ) |
| 10 |
8 9
|
syld3an3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ F e. T ) -> E! f e. T ( f ` P ) = ( F ` P ) ) |
| 11 |
|
fveq1 |
|- ( f = F -> ( f ` P ) = ( F ` P ) ) |
| 12 |
11
|
eqeq1d |
|- ( f = F -> ( ( f ` P ) = ( F ` P ) <-> ( F ` P ) = ( F ` P ) ) ) |
| 13 |
12
|
riota2 |
|- ( ( F e. T /\ E! f e. T ( f ` P ) = ( F ` P ) ) -> ( ( F ` P ) = ( F ` P ) <-> ( iota_ f e. T ( f ` P ) = ( F ` P ) ) = F ) ) |
| 14 |
6 10 13
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ F e. T ) -> ( ( F ` P ) = ( F ` P ) <-> ( iota_ f e. T ( f ` P ) = ( F ` P ) ) = F ) ) |
| 15 |
5 14
|
mpbid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ F e. T ) -> ( iota_ f e. T ( f ` P ) = ( F ` P ) ) = F ) |
| 16 |
15
|
eqcomd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ F e. T ) -> F = ( iota_ f e. T ( f ` P ) = ( F ` P ) ) ) |