Metamath Proof Explorer


Theorem ltrniotavalbN

Description: Value of the unique translation specified by a value. (Contributed by NM, 10-Mar-2014) (New usage is discouraged.)

Ref Expression
Hypotheses ltrniotavalb.l = ( le ‘ 𝐾 )
ltrniotavalb.a 𝐴 = ( Atoms ‘ 𝐾 )
ltrniotavalb.h 𝐻 = ( LHyp ‘ 𝐾 )
ltrniotavalb.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
Assertion ltrniotavalbN ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) → ( ( 𝐹𝑃 ) = 𝑄𝐹 = ( 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 ) ) )

Proof

Step Hyp Ref Expression
1 ltrniotavalb.l = ( le ‘ 𝐾 )
2 ltrniotavalb.a 𝐴 = ( Atoms ‘ 𝐾 )
3 ltrniotavalb.h 𝐻 = ( LHyp ‘ 𝐾 )
4 ltrniotavalb.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
5 simpl1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) ∧ ( 𝐹𝑃 ) = 𝑄 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
6 simpl3 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) ∧ ( 𝐹𝑃 ) = 𝑄 ) → 𝐹𝑇 )
7 simpl2l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) ∧ ( 𝐹𝑃 ) = 𝑄 ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
8 simpl2r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) ∧ ( 𝐹𝑃 ) = 𝑄 ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
9 eqid ( 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 ) = ( 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 )
10 1 2 3 4 9 ltrniotacl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 ) ∈ 𝑇 )
11 5 7 8 10 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) ∧ ( 𝐹𝑃 ) = 𝑄 ) → ( 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 ) ∈ 𝑇 )
12 simpr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) ∧ ( 𝐹𝑃 ) = 𝑄 ) → ( 𝐹𝑃 ) = 𝑄 )
13 1 2 3 4 9 ltrniotaval ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( ( 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 ) ‘ 𝑃 ) = 𝑄 )
14 5 7 8 13 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) ∧ ( 𝐹𝑃 ) = 𝑄 ) → ( ( 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 ) ‘ 𝑃 ) = 𝑄 )
15 12 14 eqtr4d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) ∧ ( 𝐹𝑃 ) = 𝑄 ) → ( 𝐹𝑃 ) = ( ( 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 ) ‘ 𝑃 ) )
16 1 2 3 4 cdlemd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 ) ∈ 𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝐹𝑃 ) = ( ( 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 ) ‘ 𝑃 ) ) → 𝐹 = ( 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 ) )
17 5 6 11 7 15 16 syl311anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) ∧ ( 𝐹𝑃 ) = 𝑄 ) → 𝐹 = ( 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 ) )
18 fveq1 ( 𝐹 = ( 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 ) → ( 𝐹𝑃 ) = ( ( 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 ) ‘ 𝑃 ) )
19 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
20 simp2l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
21 simp2r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
22 19 20 21 13 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) → ( ( 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 ) ‘ 𝑃 ) = 𝑄 )
23 18 22 sylan9eqr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) ∧ 𝐹 = ( 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 ) ) → ( 𝐹𝑃 ) = 𝑄 )
24 17 23 impbida ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝐹𝑇 ) → ( ( 𝐹𝑃 ) = 𝑄𝐹 = ( 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 ) ) )