| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ltrniotaval.l |
|- .<_ = ( le ` K ) |
| 2 |
|
ltrniotaval.a |
|- A = ( Atoms ` K ) |
| 3 |
|
ltrniotaval.h |
|- H = ( LHyp ` K ) |
| 4 |
|
ltrniotaval.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 5 |
|
ltrniotaval.f |
|- F = ( iota_ f e. T ( f ` P ) = Q ) |
| 6 |
|
simp1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( K e. HL /\ W e. H ) ) |
| 7 |
1 2 3 4 5
|
ltrniotacl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> F e. T ) |
| 8 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 9 |
8 3 4
|
ltrn1o |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> F : ( Base ` K ) -1-1-onto-> ( Base ` K ) ) |
| 10 |
6 7 9
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> F : ( Base ` K ) -1-1-onto-> ( Base ` K ) ) |
| 11 |
|
simp2l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> P e. A ) |
| 12 |
8 2
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
| 13 |
11 12
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> P e. ( Base ` K ) ) |
| 14 |
10 13
|
jca |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( F : ( Base ` K ) -1-1-onto-> ( Base ` K ) /\ P e. ( Base ` K ) ) ) |
| 15 |
1 2 3 4 5
|
ltrniotaval |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( F ` P ) = Q ) |
| 16 |
|
f1ocnvfv |
|- ( ( F : ( Base ` K ) -1-1-onto-> ( Base ` K ) /\ P e. ( Base ` K ) ) -> ( ( F ` P ) = Q -> ( `' F ` Q ) = P ) ) |
| 17 |
14 15 16
|
sylc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( `' F ` Q ) = P ) |