Metamath Proof Explorer


Theorem cdlemn4

Description: Part of proof of Lemma N of Crawley p. 121 line 31. (Contributed by NM, 21-Feb-2014) (Revised by Mario Carneiro, 24-Jun-2014)

Ref Expression
Hypotheses cdlemn4.b B = Base K
cdlemn4.l ˙ = K
cdlemn4.a A = Atoms K
cdlemn4.p P = oc K W
cdlemn4.h H = LHyp K
cdlemn4.t T = LTrn K W
cdlemn4.o O = h T I B
cdlemn4.u U = DVecH K W
cdlemn4.f F = ι h T | h P = Q
cdlemn4.g G = ι h T | h P = R
cdlemn4.j J = ι h T | h Q = R
cdlemn4.s + ˙ = + U
Assertion cdlemn4 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W G I T = F I T + ˙ J O

Proof

Step Hyp Ref Expression
1 cdlemn4.b B = Base K
2 cdlemn4.l ˙ = K
3 cdlemn4.a A = Atoms K
4 cdlemn4.p P = oc K W
5 cdlemn4.h H = LHyp K
6 cdlemn4.t T = LTrn K W
7 cdlemn4.o O = h T I B
8 cdlemn4.u U = DVecH K W
9 cdlemn4.f F = ι h T | h P = Q
10 cdlemn4.g G = ι h T | h P = R
11 cdlemn4.j J = ι h T | h Q = R
12 cdlemn4.s + ˙ = + U
13 simp1 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W K HL W H
14 2 3 5 4 lhpocnel2 K HL W H P A ¬ P ˙ W
15 13 14 syl K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W P A ¬ P ˙ W
16 simp2 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W Q A ¬ Q ˙ W
17 2 3 5 6 9 ltrniotacl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T
18 13 15 16 17 syl3anc K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W F T
19 eqid TEndo K W = TEndo K W
20 5 6 19 tendoidcl K HL W H I T TEndo K W
21 13 20 syl K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W I T TEndo K W
22 2 3 5 6 11 ltrniotacl K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W J T
23 1 5 6 19 7 tendo0cl K HL W H O TEndo K W
24 13 23 syl K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W O TEndo K W
25 eqid Scalar U = Scalar U
26 eqid + Scalar U = + Scalar U
27 5 6 19 8 25 12 26 dvhopvadd K HL W H F T I T TEndo K W J T O TEndo K W F I T + ˙ J O = F J I T + Scalar U O
28 13 18 21 22 24 27 syl122anc K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W F I T + ˙ J O = F J I T + Scalar U O
29 5 6 ltrncom K HL W H F T J T F J = J F
30 13 18 22 29 syl3anc K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W F J = J F
31 2 3 4 5 6 9 10 11 cdlemn3 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W J F = G
32 30 31 eqtrd K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W F J = G
33 eqid EDRing K W = EDRing K W
34 5 33 8 25 dvhsca K HL W H Scalar U = EDRing K W
35 34 fveq2d K HL W H 0 Scalar U = 0 EDRing K W
36 eqid 0 EDRing K W = 0 EDRing K W
37 1 5 6 33 7 36 erng0g K HL W H 0 EDRing K W = O
38 35 37 eqtrd K HL W H 0 Scalar U = O
39 13 38 syl K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W 0 Scalar U = O
40 39 oveq2d K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W I T + Scalar U 0 Scalar U = I T + Scalar U O
41 5 33 erngdv K HL W H EDRing K W DivRing
42 drnggrp EDRing K W DivRing EDRing K W Grp
43 41 42 syl K HL W H EDRing K W Grp
44 34 43 eqeltrd K HL W H Scalar U Grp
45 13 44 syl K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W Scalar U Grp
46 eqid Base Scalar U = Base Scalar U
47 5 19 8 25 46 dvhbase K HL W H Base Scalar U = TEndo K W
48 13 47 syl K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W Base Scalar U = TEndo K W
49 21 48 eleqtrrd K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W I T Base Scalar U
50 eqid 0 Scalar U = 0 Scalar U
51 46 26 50 grprid Scalar U Grp I T Base Scalar U I T + Scalar U 0 Scalar U = I T
52 45 49 51 syl2anc K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W I T + Scalar U 0 Scalar U = I T
53 40 52 eqtr3d K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W I T + Scalar U O = I T
54 32 53 opeq12d K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W F J I T + Scalar U O = G I T
55 28 54 eqtr2d K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W G I T = F I T + ˙ J O