Description: Part of proof of Lemma N of Crawley p. 121 line 31. (Contributed by NM, 21-Feb-2014) (Revised by Mario Carneiro, 24-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cdlemn4.b | |
|
cdlemn4.l | |
||
cdlemn4.a | |
||
cdlemn4.p | |
||
cdlemn4.h | |
||
cdlemn4.t | |
||
cdlemn4.o | |
||
cdlemn4.u | |
||
cdlemn4.f | |
||
cdlemn4.g | |
||
cdlemn4.j | |
||
cdlemn4.s | |
||
Assertion | cdlemn4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemn4.b | |
|
2 | cdlemn4.l | |
|
3 | cdlemn4.a | |
|
4 | cdlemn4.p | |
|
5 | cdlemn4.h | |
|
6 | cdlemn4.t | |
|
7 | cdlemn4.o | |
|
8 | cdlemn4.u | |
|
9 | cdlemn4.f | |
|
10 | cdlemn4.g | |
|
11 | cdlemn4.j | |
|
12 | cdlemn4.s | |
|
13 | simp1 | |
|
14 | 2 3 5 4 | lhpocnel2 | |
15 | 13 14 | syl | |
16 | simp2 | |
|
17 | 2 3 5 6 9 | ltrniotacl | |
18 | 13 15 16 17 | syl3anc | |
19 | eqid | |
|
20 | 5 6 19 | tendoidcl | |
21 | 13 20 | syl | |
22 | 2 3 5 6 11 | ltrniotacl | |
23 | 1 5 6 19 7 | tendo0cl | |
24 | 13 23 | syl | |
25 | eqid | |
|
26 | eqid | |
|
27 | 5 6 19 8 25 12 26 | dvhopvadd | |
28 | 13 18 21 22 24 27 | syl122anc | |
29 | 5 6 | ltrncom | |
30 | 13 18 22 29 | syl3anc | |
31 | 2 3 4 5 6 9 10 11 | cdlemn3 | |
32 | 30 31 | eqtrd | |
33 | eqid | |
|
34 | 5 33 8 25 | dvhsca | |
35 | 34 | fveq2d | |
36 | eqid | |
|
37 | 1 5 6 33 7 36 | erng0g | |
38 | 35 37 | eqtrd | |
39 | 13 38 | syl | |
40 | 39 | oveq2d | |
41 | 5 33 | erngdv | |
42 | drnggrp | |
|
43 | 41 42 | syl | |
44 | 34 43 | eqeltrd | |
45 | 13 44 | syl | |
46 | eqid | |
|
47 | 5 19 8 25 46 | dvhbase | |
48 | 13 47 | syl | |
49 | 21 48 | eleqtrrd | |
50 | eqid | |
|
51 | 46 26 50 | grprid | |
52 | 45 49 51 | syl2anc | |
53 | 40 52 | eqtr3d | |
54 | 32 53 | opeq12d | |
55 | 28 54 | eqtr2d | |