Metamath Proof Explorer


Theorem cdlemn4

Description: Part of proof of Lemma N of Crawley p. 121 line 31. (Contributed by NM, 21-Feb-2014) (Revised by Mario Carneiro, 24-Jun-2014)

Ref Expression
Hypotheses cdlemn4.b B=BaseK
cdlemn4.l ˙=K
cdlemn4.a A=AtomsK
cdlemn4.p P=ocKW
cdlemn4.h H=LHypK
cdlemn4.t T=LTrnKW
cdlemn4.o O=hTIB
cdlemn4.u U=DVecHKW
cdlemn4.f F=ιhT|hP=Q
cdlemn4.g G=ιhT|hP=R
cdlemn4.j J=ιhT|hQ=R
cdlemn4.s +˙=+U
Assertion cdlemn4 KHLWHQA¬Q˙WRA¬R˙WGIT=FIT+˙JO

Proof

Step Hyp Ref Expression
1 cdlemn4.b B=BaseK
2 cdlemn4.l ˙=K
3 cdlemn4.a A=AtomsK
4 cdlemn4.p P=ocKW
5 cdlemn4.h H=LHypK
6 cdlemn4.t T=LTrnKW
7 cdlemn4.o O=hTIB
8 cdlemn4.u U=DVecHKW
9 cdlemn4.f F=ιhT|hP=Q
10 cdlemn4.g G=ιhT|hP=R
11 cdlemn4.j J=ιhT|hQ=R
12 cdlemn4.s +˙=+U
13 simp1 KHLWHQA¬Q˙WRA¬R˙WKHLWH
14 2 3 5 4 lhpocnel2 KHLWHPA¬P˙W
15 13 14 syl KHLWHQA¬Q˙WRA¬R˙WPA¬P˙W
16 simp2 KHLWHQA¬Q˙WRA¬R˙WQA¬Q˙W
17 2 3 5 6 9 ltrniotacl KHLWHPA¬P˙WQA¬Q˙WFT
18 13 15 16 17 syl3anc KHLWHQA¬Q˙WRA¬R˙WFT
19 eqid TEndoKW=TEndoKW
20 5 6 19 tendoidcl KHLWHITTEndoKW
21 13 20 syl KHLWHQA¬Q˙WRA¬R˙WITTEndoKW
22 2 3 5 6 11 ltrniotacl KHLWHQA¬Q˙WRA¬R˙WJT
23 1 5 6 19 7 tendo0cl KHLWHOTEndoKW
24 13 23 syl KHLWHQA¬Q˙WRA¬R˙WOTEndoKW
25 eqid ScalarU=ScalarU
26 eqid +ScalarU=+ScalarU
27 5 6 19 8 25 12 26 dvhopvadd KHLWHFTITTEndoKWJTOTEndoKWFIT+˙JO=FJIT+ScalarUO
28 13 18 21 22 24 27 syl122anc KHLWHQA¬Q˙WRA¬R˙WFIT+˙JO=FJIT+ScalarUO
29 5 6 ltrncom KHLWHFTJTFJ=JF
30 13 18 22 29 syl3anc KHLWHQA¬Q˙WRA¬R˙WFJ=JF
31 2 3 4 5 6 9 10 11 cdlemn3 KHLWHQA¬Q˙WRA¬R˙WJF=G
32 30 31 eqtrd KHLWHQA¬Q˙WRA¬R˙WFJ=G
33 eqid EDRingKW=EDRingKW
34 5 33 8 25 dvhsca KHLWHScalarU=EDRingKW
35 34 fveq2d KHLWH0ScalarU=0EDRingKW
36 eqid 0EDRingKW=0EDRingKW
37 1 5 6 33 7 36 erng0g KHLWH0EDRingKW=O
38 35 37 eqtrd KHLWH0ScalarU=O
39 13 38 syl KHLWHQA¬Q˙WRA¬R˙W0ScalarU=O
40 39 oveq2d KHLWHQA¬Q˙WRA¬R˙WIT+ScalarU0ScalarU=IT+ScalarUO
41 5 33 erngdv KHLWHEDRingKWDivRing
42 drnggrp EDRingKWDivRingEDRingKWGrp
43 41 42 syl KHLWHEDRingKWGrp
44 34 43 eqeltrd KHLWHScalarUGrp
45 13 44 syl KHLWHQA¬Q˙WRA¬R˙WScalarUGrp
46 eqid BaseScalarU=BaseScalarU
47 5 19 8 25 46 dvhbase KHLWHBaseScalarU=TEndoKW
48 13 47 syl KHLWHQA¬Q˙WRA¬R˙WBaseScalarU=TEndoKW
49 21 48 eleqtrrd KHLWHQA¬Q˙WRA¬R˙WITBaseScalarU
50 eqid 0ScalarU=0ScalarU
51 46 26 50 grprid ScalarUGrpITBaseScalarUIT+ScalarU0ScalarU=IT
52 45 49 51 syl2anc KHLWHQA¬Q˙WRA¬R˙WIT+ScalarU0ScalarU=IT
53 40 52 eqtr3d KHLWHQA¬Q˙WRA¬R˙WIT+ScalarUO=IT
54 32 53 opeq12d KHLWHQA¬Q˙WRA¬R˙WFJIT+ScalarUO=GIT
55 28 54 eqtr2d KHLWHQA¬Q˙WRA¬R˙WGIT=FIT+˙JO