Metamath Proof Explorer


Theorem cdlemn4a

Description: Part of proof of Lemma N of Crawley p. 121 line 32. (Contributed by NM, 24-Feb-2014)

Ref Expression
Hypotheses cdlemn4.b B = Base K
cdlemn4.l ˙ = K
cdlemn4.a A = Atoms K
cdlemn4.p P = oc K W
cdlemn4.h H = LHyp K
cdlemn4.t T = LTrn K W
cdlemn4.o O = h T I B
cdlemn4.u U = DVecH K W
cdlemn4.f F = ι h T | h P = Q
cdlemn4.g G = ι h T | h P = R
cdlemn4.j J = ι h T | h Q = R
cdlemn4a.n N = LSpan U
cdlemn4a.s ˙ = LSSum U
Assertion cdlemn4a K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W N G I T N F I T ˙ N J O

Proof

Step Hyp Ref Expression
1 cdlemn4.b B = Base K
2 cdlemn4.l ˙ = K
3 cdlemn4.a A = Atoms K
4 cdlemn4.p P = oc K W
5 cdlemn4.h H = LHyp K
6 cdlemn4.t T = LTrn K W
7 cdlemn4.o O = h T I B
8 cdlemn4.u U = DVecH K W
9 cdlemn4.f F = ι h T | h P = Q
10 cdlemn4.g G = ι h T | h P = R
11 cdlemn4.j J = ι h T | h Q = R
12 cdlemn4a.n N = LSpan U
13 cdlemn4a.s ˙ = LSSum U
14 eqid + U = + U
15 1 2 3 4 5 6 7 8 9 10 11 14 cdlemn4 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W G I T = F I T + U J O
16 15 sneqd K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W G I T = F I T + U J O
17 16 fveq2d K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W N G I T = N F I T + U J O
18 simp1 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W K HL W H
19 5 8 18 dvhlmod K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W U LMod
20 2 3 5 4 lhpocnel2 K HL W H P A ¬ P ˙ W
21 20 3ad2ant1 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W P A ¬ P ˙ W
22 simp2 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W Q A ¬ Q ˙ W
23 2 3 5 6 9 ltrniotacl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T
24 18 21 22 23 syl3anc K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W F T
25 eqid TEndo K W = TEndo K W
26 5 6 25 tendoidcl K HL W H I T TEndo K W
27 26 3ad2ant1 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W I T TEndo K W
28 eqid Base U = Base U
29 5 6 25 8 28 dvhelvbasei K HL W H F T I T TEndo K W F I T Base U
30 18 24 27 29 syl12anc K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W F I T Base U
31 2 3 5 6 11 ltrniotacl K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W J T
32 1 5 6 25 7 tendo0cl K HL W H O TEndo K W
33 32 3ad2ant1 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W O TEndo K W
34 5 6 25 8 28 dvhelvbasei K HL W H J T O TEndo K W J O Base U
35 18 31 33 34 syl12anc K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W J O Base U
36 28 14 12 13 lspsntri U LMod F I T Base U J O Base U N F I T + U J O N F I T ˙ N J O
37 19 30 35 36 syl3anc K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W N F I T + U J O N F I T ˙ N J O
38 17 37 eqsstrd K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W N G I T N F I T ˙ N J O