Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemn4.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdlemn4.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cdlemn4.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
cdlemn4.p |
⊢ 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
cdlemn4.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
cdlemn4.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
cdlemn4.o |
⊢ 𝑂 = ( ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) |
8 |
|
cdlemn4.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
cdlemn4.f |
⊢ 𝐹 = ( ℩ ℎ ∈ 𝑇 ( ℎ ‘ 𝑃 ) = 𝑄 ) |
10 |
|
cdlemn4.g |
⊢ 𝐺 = ( ℩ ℎ ∈ 𝑇 ( ℎ ‘ 𝑃 ) = 𝑅 ) |
11 |
|
cdlemn4.j |
⊢ 𝐽 = ( ℩ ℎ ∈ 𝑇 ( ℎ ‘ 𝑄 ) = 𝑅 ) |
12 |
|
cdlemn4a.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
13 |
|
cdlemn4a.s |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
14 |
|
eqid |
⊢ ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) |
15 |
1 2 3 4 5 6 7 8 9 10 11 14
|
cdlemn4 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) → 〈 𝐺 , ( I ↾ 𝑇 ) 〉 = ( 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ( +g ‘ 𝑈 ) 〈 𝐽 , 𝑂 〉 ) ) |
16 |
15
|
sneqd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) → { 〈 𝐺 , ( I ↾ 𝑇 ) 〉 } = { ( 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ( +g ‘ 𝑈 ) 〈 𝐽 , 𝑂 〉 ) } ) |
17 |
16
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) → ( 𝑁 ‘ { 〈 𝐺 , ( I ↾ 𝑇 ) 〉 } ) = ( 𝑁 ‘ { ( 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ( +g ‘ 𝑈 ) 〈 𝐽 , 𝑂 〉 ) } ) ) |
18 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
19 |
5 8 18
|
dvhlmod |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) → 𝑈 ∈ LMod ) |
20 |
2 3 5 4
|
lhpocnel2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
21 |
20
|
3ad2ant1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
22 |
|
simp2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
23 |
2 3 5 6 9
|
ltrniotacl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → 𝐹 ∈ 𝑇 ) |
24 |
18 21 22 23
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) → 𝐹 ∈ 𝑇 ) |
25 |
|
eqid |
⊢ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
26 |
5 6 25
|
tendoidcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( I ↾ 𝑇 ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) |
27 |
26
|
3ad2ant1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) → ( I ↾ 𝑇 ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) |
28 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
29 |
5 6 25 8 28
|
dvhelvbasei |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( I ↾ 𝑇 ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) → 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ∈ ( Base ‘ 𝑈 ) ) |
30 |
18 24 27 29
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) → 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ∈ ( Base ‘ 𝑈 ) ) |
31 |
2 3 5 6 11
|
ltrniotacl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) → 𝐽 ∈ 𝑇 ) |
32 |
1 5 6 25 7
|
tendo0cl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝑂 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) |
33 |
32
|
3ad2ant1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) → 𝑂 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) |
34 |
5 6 25 8 28
|
dvhelvbasei |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐽 ∈ 𝑇 ∧ 𝑂 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) → 〈 𝐽 , 𝑂 〉 ∈ ( Base ‘ 𝑈 ) ) |
35 |
18 31 33 34
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) → 〈 𝐽 , 𝑂 〉 ∈ ( Base ‘ 𝑈 ) ) |
36 |
28 14 12 13
|
lspsntri |
⊢ ( ( 𝑈 ∈ LMod ∧ 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ∈ ( Base ‘ 𝑈 ) ∧ 〈 𝐽 , 𝑂 〉 ∈ ( Base ‘ 𝑈 ) ) → ( 𝑁 ‘ { ( 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ( +g ‘ 𝑈 ) 〈 𝐽 , 𝑂 〉 ) } ) ⊆ ( ( 𝑁 ‘ { 〈 𝐹 , ( I ↾ 𝑇 ) 〉 } ) ⊕ ( 𝑁 ‘ { 〈 𝐽 , 𝑂 〉 } ) ) ) |
37 |
19 30 35 36
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) → ( 𝑁 ‘ { ( 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ( +g ‘ 𝑈 ) 〈 𝐽 , 𝑂 〉 ) } ) ⊆ ( ( 𝑁 ‘ { 〈 𝐹 , ( I ↾ 𝑇 ) 〉 } ) ⊕ ( 𝑁 ‘ { 〈 𝐽 , 𝑂 〉 } ) ) ) |
38 |
17 37
|
eqsstrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) → ( 𝑁 ‘ { 〈 𝐺 , ( I ↾ 𝑇 ) 〉 } ) ⊆ ( ( 𝑁 ‘ { 〈 𝐹 , ( I ↾ 𝑇 ) 〉 } ) ⊕ ( 𝑁 ‘ { 〈 𝐽 , 𝑂 〉 } ) ) ) |