Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemn5.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdlemn5.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cdlemn5.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cdlemn5.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
cdlemn5.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
cdlemn5.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
cdlemn5.s |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
8 |
|
cdlemn5.i |
⊢ 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
cdlemn5.J |
⊢ 𝐽 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) |
10 |
|
cdlemn5.p |
⊢ 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
|
cdlemn5.o |
⊢ 𝑂 = ( ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) |
12 |
|
cdlemn5.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
13 |
|
cdlemn5.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
14 |
|
cdlemn5.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
15 |
|
cdlemn5.f |
⊢ 𝐹 = ( ℩ ℎ ∈ 𝑇 ( ℎ ‘ 𝑃 ) = 𝑄 ) |
16 |
|
cdlemn5.g |
⊢ 𝐺 = ( ℩ ℎ ∈ 𝑇 ( ℎ ‘ 𝑃 ) = 𝑅 ) |
17 |
|
cdlemn5.m |
⊢ 𝑀 = ( ℩ ℎ ∈ 𝑇 ( ℎ ‘ 𝑄 ) = 𝑅 ) |
18 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑅 ≤ ( 𝑄 ∨ 𝑋 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
19 |
|
simp22 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑅 ≤ ( 𝑄 ∨ 𝑋 ) ) → ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) |
20 |
2 4 5 10 12 9 6 14 16
|
diclspsn |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) → ( 𝐽 ‘ 𝑅 ) = ( 𝑁 ‘ { 〈 𝐺 , ( I ↾ 𝑇 ) 〉 } ) ) |
21 |
18 19 20
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑅 ≤ ( 𝑄 ∨ 𝑋 ) ) → ( 𝐽 ‘ 𝑅 ) = ( 𝑁 ‘ { 〈 𝐺 , ( I ↾ 𝑇 ) 〉 } ) ) |
22 |
|
simp21 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑅 ≤ ( 𝑄 ∨ 𝑋 ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
23 |
1 2 4 10 5 12 11 6 15 16 17 14 7
|
cdlemn4a |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) → ( 𝑁 ‘ { 〈 𝐺 , ( I ↾ 𝑇 ) 〉 } ) ⊆ ( ( 𝑁 ‘ { 〈 𝐹 , ( I ↾ 𝑇 ) 〉 } ) ⊕ ( 𝑁 ‘ { 〈 𝑀 , 𝑂 〉 } ) ) ) |
24 |
18 22 19 23
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑅 ≤ ( 𝑄 ∨ 𝑋 ) ) → ( 𝑁 ‘ { 〈 𝐺 , ( I ↾ 𝑇 ) 〉 } ) ⊆ ( ( 𝑁 ‘ { 〈 𝐹 , ( I ↾ 𝑇 ) 〉 } ) ⊕ ( 𝑁 ‘ { 〈 𝑀 , 𝑂 〉 } ) ) ) |
25 |
2 4 5 10 12 9 6 14 15
|
diclspsn |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝐽 ‘ 𝑄 ) = ( 𝑁 ‘ { 〈 𝐹 , ( I ↾ 𝑇 ) 〉 } ) ) |
26 |
18 22 25
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑅 ≤ ( 𝑄 ∨ 𝑋 ) ) → ( 𝐽 ‘ 𝑄 ) = ( 𝑁 ‘ { 〈 𝐹 , ( I ↾ 𝑇 ) 〉 } ) ) |
27 |
26
|
oveq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑅 ≤ ( 𝑄 ∨ 𝑋 ) ) → ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝑁 ‘ { 〈 𝑀 , 𝑂 〉 } ) ) = ( ( 𝑁 ‘ { 〈 𝐹 , ( I ↾ 𝑇 ) 〉 } ) ⊕ ( 𝑁 ‘ { 〈 𝑀 , 𝑂 〉 } ) ) ) |
28 |
24 27
|
sseqtrrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑅 ≤ ( 𝑄 ∨ 𝑋 ) ) → ( 𝑁 ‘ { 〈 𝐺 , ( I ↾ 𝑇 ) 〉 } ) ⊆ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝑁 ‘ { 〈 𝑀 , 𝑂 〉 } ) ) ) |
29 |
5 6 18
|
dvhlmod |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑅 ≤ ( 𝑄 ∨ 𝑋 ) ) → 𝑈 ∈ LMod ) |
30 |
|
eqid |
⊢ ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 ) |
31 |
30
|
lsssssubg |
⊢ ( 𝑈 ∈ LMod → ( LSubSp ‘ 𝑈 ) ⊆ ( SubGrp ‘ 𝑈 ) ) |
32 |
29 31
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑅 ≤ ( 𝑄 ∨ 𝑋 ) ) → ( LSubSp ‘ 𝑈 ) ⊆ ( SubGrp ‘ 𝑈 ) ) |
33 |
2 4 5 6 9 30
|
diclss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝐽 ‘ 𝑄 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
34 |
18 22 33
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑅 ≤ ( 𝑄 ∨ 𝑋 ) ) → ( 𝐽 ‘ 𝑄 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
35 |
32 34
|
sseldd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑅 ≤ ( 𝑄 ∨ 𝑋 ) ) → ( 𝐽 ‘ 𝑄 ) ∈ ( SubGrp ‘ 𝑈 ) ) |
36 |
|
simp23 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑅 ≤ ( 𝑄 ∨ 𝑋 ) ) → ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) |
37 |
1 2 5 6 8 30
|
diblss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( 𝐼 ‘ 𝑋 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
38 |
18 36 37
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑅 ≤ ( 𝑄 ∨ 𝑋 ) ) → ( 𝐼 ‘ 𝑋 ) ∈ ( LSubSp ‘ 𝑈 ) ) |
39 |
32 38
|
sseldd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑅 ≤ ( 𝑄 ∨ 𝑋 ) ) → ( 𝐼 ‘ 𝑋 ) ∈ ( SubGrp ‘ 𝑈 ) ) |
40 |
|
eqid |
⊢ ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
41 |
1 2 3 4 5 12 40 11 8 6 14 17
|
cdlemn2a |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑅 ≤ ( 𝑄 ∨ 𝑋 ) ) → ( 𝑁 ‘ { 〈 𝑀 , 𝑂 〉 } ) ⊆ ( 𝐼 ‘ 𝑋 ) ) |
42 |
7
|
lsmless2 |
⊢ ( ( ( 𝐽 ‘ 𝑄 ) ∈ ( SubGrp ‘ 𝑈 ) ∧ ( 𝐼 ‘ 𝑋 ) ∈ ( SubGrp ‘ 𝑈 ) ∧ ( 𝑁 ‘ { 〈 𝑀 , 𝑂 〉 } ) ⊆ ( 𝐼 ‘ 𝑋 ) ) → ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝑁 ‘ { 〈 𝑀 , 𝑂 〉 } ) ) ⊆ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ 𝑋 ) ) ) |
43 |
35 39 41 42
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑅 ≤ ( 𝑄 ∨ 𝑋 ) ) → ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝑁 ‘ { 〈 𝑀 , 𝑂 〉 } ) ) ⊆ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ 𝑋 ) ) ) |
44 |
28 43
|
sstrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑅 ≤ ( 𝑄 ∨ 𝑋 ) ) → ( 𝑁 ‘ { 〈 𝐺 , ( I ↾ 𝑇 ) 〉 } ) ⊆ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ 𝑋 ) ) ) |
45 |
21 44
|
eqsstrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑅 ≤ ( 𝑄 ∨ 𝑋 ) ) → ( 𝐽 ‘ 𝑅 ) ⊆ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ 𝑋 ) ) ) |