Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemn5.b |
|- B = ( Base ` K ) |
2 |
|
cdlemn5.l |
|- .<_ = ( le ` K ) |
3 |
|
cdlemn5.j |
|- .\/ = ( join ` K ) |
4 |
|
cdlemn5.a |
|- A = ( Atoms ` K ) |
5 |
|
cdlemn5.h |
|- H = ( LHyp ` K ) |
6 |
|
cdlemn5.u |
|- U = ( ( DVecH ` K ) ` W ) |
7 |
|
cdlemn5.s |
|- .(+) = ( LSSum ` U ) |
8 |
|
cdlemn5.i |
|- I = ( ( DIsoB ` K ) ` W ) |
9 |
|
cdlemn5.J |
|- J = ( ( DIsoC ` K ) ` W ) |
10 |
|
cdlemn5.p |
|- P = ( ( oc ` K ) ` W ) |
11 |
|
cdlemn5.o |
|- O = ( h e. T |-> ( _I |` B ) ) |
12 |
|
cdlemn5.t |
|- T = ( ( LTrn ` K ) ` W ) |
13 |
|
cdlemn5.e |
|- E = ( ( TEndo ` K ) ` W ) |
14 |
|
cdlemn5.n |
|- N = ( LSpan ` U ) |
15 |
|
cdlemn5.f |
|- F = ( iota_ h e. T ( h ` P ) = Q ) |
16 |
|
cdlemn5.g |
|- G = ( iota_ h e. T ( h ` P ) = R ) |
17 |
|
cdlemn5.m |
|- M = ( iota_ h e. T ( h ` Q ) = R ) |
18 |
|
simp1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ R .<_ ( Q .\/ X ) ) -> ( K e. HL /\ W e. H ) ) |
19 |
|
simp22 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ R .<_ ( Q .\/ X ) ) -> ( R e. A /\ -. R .<_ W ) ) |
20 |
2 4 5 10 12 9 6 14 16
|
diclspsn |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) ) -> ( J ` R ) = ( N ` { <. G , ( _I |` T ) >. } ) ) |
21 |
18 19 20
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ R .<_ ( Q .\/ X ) ) -> ( J ` R ) = ( N ` { <. G , ( _I |` T ) >. } ) ) |
22 |
|
simp21 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ R .<_ ( Q .\/ X ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
23 |
1 2 4 10 5 12 11 6 15 16 17 14 7
|
cdlemn4a |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) -> ( N ` { <. G , ( _I |` T ) >. } ) C_ ( ( N ` { <. F , ( _I |` T ) >. } ) .(+) ( N ` { <. M , O >. } ) ) ) |
24 |
18 22 19 23
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ R .<_ ( Q .\/ X ) ) -> ( N ` { <. G , ( _I |` T ) >. } ) C_ ( ( N ` { <. F , ( _I |` T ) >. } ) .(+) ( N ` { <. M , O >. } ) ) ) |
25 |
2 4 5 10 12 9 6 14 15
|
diclspsn |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( J ` Q ) = ( N ` { <. F , ( _I |` T ) >. } ) ) |
26 |
18 22 25
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ R .<_ ( Q .\/ X ) ) -> ( J ` Q ) = ( N ` { <. F , ( _I |` T ) >. } ) ) |
27 |
26
|
oveq1d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ R .<_ ( Q .\/ X ) ) -> ( ( J ` Q ) .(+) ( N ` { <. M , O >. } ) ) = ( ( N ` { <. F , ( _I |` T ) >. } ) .(+) ( N ` { <. M , O >. } ) ) ) |
28 |
24 27
|
sseqtrrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ R .<_ ( Q .\/ X ) ) -> ( N ` { <. G , ( _I |` T ) >. } ) C_ ( ( J ` Q ) .(+) ( N ` { <. M , O >. } ) ) ) |
29 |
5 6 18
|
dvhlmod |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ R .<_ ( Q .\/ X ) ) -> U e. LMod ) |
30 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
31 |
30
|
lsssssubg |
|- ( U e. LMod -> ( LSubSp ` U ) C_ ( SubGrp ` U ) ) |
32 |
29 31
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ R .<_ ( Q .\/ X ) ) -> ( LSubSp ` U ) C_ ( SubGrp ` U ) ) |
33 |
2 4 5 6 9 30
|
diclss |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( J ` Q ) e. ( LSubSp ` U ) ) |
34 |
18 22 33
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ R .<_ ( Q .\/ X ) ) -> ( J ` Q ) e. ( LSubSp ` U ) ) |
35 |
32 34
|
sseldd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ R .<_ ( Q .\/ X ) ) -> ( J ` Q ) e. ( SubGrp ` U ) ) |
36 |
|
simp23 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ R .<_ ( Q .\/ X ) ) -> ( X e. B /\ X .<_ W ) ) |
37 |
1 2 5 6 8 30
|
diblss |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( I ` X ) e. ( LSubSp ` U ) ) |
38 |
18 36 37
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ R .<_ ( Q .\/ X ) ) -> ( I ` X ) e. ( LSubSp ` U ) ) |
39 |
32 38
|
sseldd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ R .<_ ( Q .\/ X ) ) -> ( I ` X ) e. ( SubGrp ` U ) ) |
40 |
|
eqid |
|- ( ( trL ` K ) ` W ) = ( ( trL ` K ) ` W ) |
41 |
1 2 3 4 5 12 40 11 8 6 14 17
|
cdlemn2a |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ R .<_ ( Q .\/ X ) ) -> ( N ` { <. M , O >. } ) C_ ( I ` X ) ) |
42 |
7
|
lsmless2 |
|- ( ( ( J ` Q ) e. ( SubGrp ` U ) /\ ( I ` X ) e. ( SubGrp ` U ) /\ ( N ` { <. M , O >. } ) C_ ( I ` X ) ) -> ( ( J ` Q ) .(+) ( N ` { <. M , O >. } ) ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) |
43 |
35 39 41 42
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ R .<_ ( Q .\/ X ) ) -> ( ( J ` Q ) .(+) ( N ` { <. M , O >. } ) ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) |
44 |
28 43
|
sstrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ R .<_ ( Q .\/ X ) ) -> ( N ` { <. G , ( _I |` T ) >. } ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) |
45 |
21 44
|
eqsstrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ R .<_ ( Q .\/ X ) ) -> ( J ` R ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) |