Metamath Proof Explorer


Theorem cdlemn5pre

Description: Part of proof of Lemma N of Crawley p. 121 line 32. (Contributed by NM, 25-Feb-2014)

Ref Expression
Hypotheses cdlemn5.b B = Base K
cdlemn5.l ˙ = K
cdlemn5.j ˙ = join K
cdlemn5.a A = Atoms K
cdlemn5.h H = LHyp K
cdlemn5.u U = DVecH K W
cdlemn5.s ˙ = LSSum U
cdlemn5.i I = DIsoB K W
cdlemn5.J J = DIsoC K W
cdlemn5.p P = oc K W
cdlemn5.o O = h T I B
cdlemn5.t T = LTrn K W
cdlemn5.e E = TEndo K W
cdlemn5.n N = LSpan U
cdlemn5.f F = ι h T | h P = Q
cdlemn5.g G = ι h T | h P = R
cdlemn5.m M = ι h T | h Q = R
Assertion cdlemn5pre K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W X B X ˙ W R ˙ Q ˙ X J R J Q ˙ I X

Proof

Step Hyp Ref Expression
1 cdlemn5.b B = Base K
2 cdlemn5.l ˙ = K
3 cdlemn5.j ˙ = join K
4 cdlemn5.a A = Atoms K
5 cdlemn5.h H = LHyp K
6 cdlemn5.u U = DVecH K W
7 cdlemn5.s ˙ = LSSum U
8 cdlemn5.i I = DIsoB K W
9 cdlemn5.J J = DIsoC K W
10 cdlemn5.p P = oc K W
11 cdlemn5.o O = h T I B
12 cdlemn5.t T = LTrn K W
13 cdlemn5.e E = TEndo K W
14 cdlemn5.n N = LSpan U
15 cdlemn5.f F = ι h T | h P = Q
16 cdlemn5.g G = ι h T | h P = R
17 cdlemn5.m M = ι h T | h Q = R
18 simp1 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W X B X ˙ W R ˙ Q ˙ X K HL W H
19 simp22 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W X B X ˙ W R ˙ Q ˙ X R A ¬ R ˙ W
20 2 4 5 10 12 9 6 14 16 diclspsn K HL W H R A ¬ R ˙ W J R = N G I T
21 18 19 20 syl2anc K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W X B X ˙ W R ˙ Q ˙ X J R = N G I T
22 simp21 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W X B X ˙ W R ˙ Q ˙ X Q A ¬ Q ˙ W
23 1 2 4 10 5 12 11 6 15 16 17 14 7 cdlemn4a K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W N G I T N F I T ˙ N M O
24 18 22 19 23 syl3anc K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W X B X ˙ W R ˙ Q ˙ X N G I T N F I T ˙ N M O
25 2 4 5 10 12 9 6 14 15 diclspsn K HL W H Q A ¬ Q ˙ W J Q = N F I T
26 18 22 25 syl2anc K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W X B X ˙ W R ˙ Q ˙ X J Q = N F I T
27 26 oveq1d K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W X B X ˙ W R ˙ Q ˙ X J Q ˙ N M O = N F I T ˙ N M O
28 24 27 sseqtrrd K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W X B X ˙ W R ˙ Q ˙ X N G I T J Q ˙ N M O
29 5 6 18 dvhlmod K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W X B X ˙ W R ˙ Q ˙ X U LMod
30 eqid LSubSp U = LSubSp U
31 30 lsssssubg U LMod LSubSp U SubGrp U
32 29 31 syl K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W X B X ˙ W R ˙ Q ˙ X LSubSp U SubGrp U
33 2 4 5 6 9 30 diclss K HL W H Q A ¬ Q ˙ W J Q LSubSp U
34 18 22 33 syl2anc K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W X B X ˙ W R ˙ Q ˙ X J Q LSubSp U
35 32 34 sseldd K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W X B X ˙ W R ˙ Q ˙ X J Q SubGrp U
36 simp23 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W X B X ˙ W R ˙ Q ˙ X X B X ˙ W
37 1 2 5 6 8 30 diblss K HL W H X B X ˙ W I X LSubSp U
38 18 36 37 syl2anc K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W X B X ˙ W R ˙ Q ˙ X I X LSubSp U
39 32 38 sseldd K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W X B X ˙ W R ˙ Q ˙ X I X SubGrp U
40 eqid trL K W = trL K W
41 1 2 3 4 5 12 40 11 8 6 14 17 cdlemn2a K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W X B X ˙ W R ˙ Q ˙ X N M O I X
42 7 lsmless2 J Q SubGrp U I X SubGrp U N M O I X J Q ˙ N M O J Q ˙ I X
43 35 39 41 42 syl3anc K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W X B X ˙ W R ˙ Q ˙ X J Q ˙ N M O J Q ˙ I X
44 28 43 sstrd K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W X B X ˙ W R ˙ Q ˙ X N G I T J Q ˙ I X
45 21 44 eqsstrd K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W X B X ˙ W R ˙ Q ˙ X J R J Q ˙ I X