Metamath Proof Explorer


Theorem cdlemn5

Description: Part of proof of Lemma N of Crawley p. 121 line 32. (Contributed by NM, 25-Feb-2014)

Ref Expression
Hypotheses cdlemn5.b B = Base K
cdlemn5.l ˙ = K
cdlemn5.j ˙ = join K
cdlemn5.a A = Atoms K
cdlemn5.h H = LHyp K
cdlemn5.u U = DVecH K W
cdlemn5.s ˙ = LSSum U
cdlemn5.i I = DIsoB K W
cdlemn5.J J = DIsoC K W
Assertion cdlemn5 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W X B X ˙ W R ˙ Q ˙ X J R J Q ˙ I X

Proof

Step Hyp Ref Expression
1 cdlemn5.b B = Base K
2 cdlemn5.l ˙ = K
3 cdlemn5.j ˙ = join K
4 cdlemn5.a A = Atoms K
5 cdlemn5.h H = LHyp K
6 cdlemn5.u U = DVecH K W
7 cdlemn5.s ˙ = LSSum U
8 cdlemn5.i I = DIsoB K W
9 cdlemn5.J J = DIsoC K W
10 eqid oc K W = oc K W
11 eqid h LTrn K W I B = h LTrn K W I B
12 eqid LTrn K W = LTrn K W
13 eqid TEndo K W = TEndo K W
14 eqid LSpan U = LSpan U
15 eqid ι h LTrn K W | h oc K W = Q = ι h LTrn K W | h oc K W = Q
16 eqid ι h LTrn K W | h oc K W = R = ι h LTrn K W | h oc K W = R
17 eqid ι h LTrn K W | h Q = R = ι h LTrn K W | h Q = R
18 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 cdlemn5pre K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W X B X ˙ W R ˙ Q ˙ X J R J Q ˙ I X