Metamath Proof Explorer


Theorem cdlemn5

Description: Part of proof of Lemma N of Crawley p. 121 line 32. (Contributed by NM, 25-Feb-2014)

Ref Expression
Hypotheses cdlemn5.b B=BaseK
cdlemn5.l ˙=K
cdlemn5.j ˙=joinK
cdlemn5.a A=AtomsK
cdlemn5.h H=LHypK
cdlemn5.u U=DVecHKW
cdlemn5.s ˙=LSSumU
cdlemn5.i I=DIsoBKW
cdlemn5.J J=DIsoCKW
Assertion cdlemn5 KHLWHQA¬Q˙WRA¬R˙WXBX˙WR˙Q˙XJRJQ˙IX

Proof

Step Hyp Ref Expression
1 cdlemn5.b B=BaseK
2 cdlemn5.l ˙=K
3 cdlemn5.j ˙=joinK
4 cdlemn5.a A=AtomsK
5 cdlemn5.h H=LHypK
6 cdlemn5.u U=DVecHKW
7 cdlemn5.s ˙=LSSumU
8 cdlemn5.i I=DIsoBKW
9 cdlemn5.J J=DIsoCKW
10 eqid ocKW=ocKW
11 eqid hLTrnKWIB=hLTrnKWIB
12 eqid LTrnKW=LTrnKW
13 eqid TEndoKW=TEndoKW
14 eqid LSpanU=LSpanU
15 eqid ιhLTrnKW|hocKW=Q=ιhLTrnKW|hocKW=Q
16 eqid ιhLTrnKW|hocKW=R=ιhLTrnKW|hocKW=R
17 eqid ιhLTrnKW|hQ=R=ιhLTrnKW|hQ=R
18 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 cdlemn5pre KHLWHQA¬Q˙WRA¬R˙WXBX˙WR˙Q˙XJRJQ˙IX