Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemn5.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdlemn5.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cdlemn5.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cdlemn5.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
cdlemn5.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
cdlemn5.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
cdlemn5.s |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
8 |
|
cdlemn5.i |
⊢ 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
cdlemn5.J |
⊢ 𝐽 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) |
10 |
|
eqid |
⊢ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) = ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
|
eqid |
⊢ ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) = ( ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) |
12 |
|
eqid |
⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
13 |
|
eqid |
⊢ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
14 |
|
eqid |
⊢ ( LSpan ‘ 𝑈 ) = ( LSpan ‘ 𝑈 ) |
15 |
|
eqid |
⊢ ( ℩ ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( ℎ ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) = ( ℩ ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( ℎ ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) |
16 |
|
eqid |
⊢ ( ℩ ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( ℎ ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑅 ) = ( ℩ ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( ℎ ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑅 ) |
17 |
|
eqid |
⊢ ( ℩ ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( ℎ ‘ 𝑄 ) = 𝑅 ) = ( ℩ ℎ ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( ℎ ‘ 𝑄 ) = 𝑅 ) |
18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
|
cdlemn5pre |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑅 ≤ ( 𝑄 ∨ 𝑋 ) ) → ( 𝐽 ‘ 𝑅 ) ⊆ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ 𝑋 ) ) ) |