Metamath Proof Explorer


Theorem cdlemn5

Description: Part of proof of Lemma N of Crawley p. 121 line 32. (Contributed by NM, 25-Feb-2014)

Ref Expression
Hypotheses cdlemn5.b 𝐵 = ( Base ‘ 𝐾 )
cdlemn5.l = ( le ‘ 𝐾 )
cdlemn5.j = ( join ‘ 𝐾 )
cdlemn5.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemn5.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemn5.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
cdlemn5.s = ( LSSum ‘ 𝑈 )
cdlemn5.i 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
cdlemn5.J 𝐽 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 )
Assertion cdlemn5 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ 𝑅 ( 𝑄 𝑋 ) ) → ( 𝐽𝑅 ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 cdlemn5.b 𝐵 = ( Base ‘ 𝐾 )
2 cdlemn5.l = ( le ‘ 𝐾 )
3 cdlemn5.j = ( join ‘ 𝐾 )
4 cdlemn5.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdlemn5.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdlemn5.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
7 cdlemn5.s = ( LSSum ‘ 𝑈 )
8 cdlemn5.i 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
9 cdlemn5.J 𝐽 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 )
10 eqid ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
11 eqid ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) ) = ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ↦ ( I ↾ 𝐵 ) )
12 eqid ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
13 eqid ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
14 eqid ( LSpan ‘ 𝑈 ) = ( LSpan ‘ 𝑈 )
15 eqid ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 ) = ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑄 )
16 eqid ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑅 ) = ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( ‘ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = 𝑅 )
17 eqid ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑄 ) = 𝑅 ) = ( ∈ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑄 ) = 𝑅 )
18 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 cdlemn5pre ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ 𝑅 ( 𝑄 𝑋 ) ) → ( 𝐽𝑅 ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) )