Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemn8.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdlemn8.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cdlemn8.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
cdlemn8.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
5 |
|
cdlemn8.p |
⊢ 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
cdlemn8.o |
⊢ 𝑂 = ( ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) |
7 |
|
cdlemn8.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
cdlemn8.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
cdlemn8.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
10 |
|
cdlemn8.s |
⊢ + = ( +g ‘ 𝑈 ) |
11 |
|
cdlemn8.f |
⊢ 𝐹 = ( ℩ ℎ ∈ 𝑇 ( ℎ ‘ 𝑃 ) = 𝑄 ) |
12 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
13 |
|
simp3l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ) ) → 𝑠 ∈ 𝐸 ) |
14 |
2 3 4 5
|
lhpocnel2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
15 |
12 14
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
16 |
|
simp2l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
17 |
2 3 4 7 11
|
ltrniotacl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → 𝐹 ∈ 𝑇 ) |
18 |
12 15 16 17
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ) ) → 𝐹 ∈ 𝑇 ) |
19 |
4 7 8
|
tendocl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ) → ( 𝑠 ‘ 𝐹 ) ∈ 𝑇 ) |
20 |
12 13 18 19
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ) ) → ( 𝑠 ‘ 𝐹 ) ∈ 𝑇 ) |
21 |
|
simp3r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ) ) → 𝑔 ∈ 𝑇 ) |
22 |
1 4 7 8 6
|
tendo0cl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝑂 ∈ 𝐸 ) |
23 |
12 22
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ) ) → 𝑂 ∈ 𝐸 ) |
24 |
|
eqid |
⊢ ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 ) |
25 |
|
eqid |
⊢ ( +g ‘ ( Scalar ‘ 𝑈 ) ) = ( +g ‘ ( Scalar ‘ 𝑈 ) ) |
26 |
4 7 8 9 24 10 25
|
dvhopvadd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑠 ‘ 𝐹 ) ∈ 𝑇 ∧ 𝑠 ∈ 𝐸 ) ∧ ( 𝑔 ∈ 𝑇 ∧ 𝑂 ∈ 𝐸 ) ) → ( 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) = 〈 ( ( 𝑠 ‘ 𝐹 ) ∘ 𝑔 ) , ( 𝑠 ( +g ‘ ( Scalar ‘ 𝑈 ) ) 𝑂 ) 〉 ) |
27 |
12 20 13 21 23 26
|
syl122anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ) ) → ( 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) = 〈 ( ( 𝑠 ‘ 𝐹 ) ∘ 𝑔 ) , ( 𝑠 ( +g ‘ ( Scalar ‘ 𝑈 ) ) 𝑂 ) 〉 ) |
28 |
|
eqid |
⊢ ( 𝑡 ∈ 𝐸 , 𝑢 ∈ 𝐸 ↦ ( ℎ ∈ 𝑇 ↦ ( ( 𝑡 ‘ ℎ ) ∘ ( 𝑢 ‘ ℎ ) ) ) ) = ( 𝑡 ∈ 𝐸 , 𝑢 ∈ 𝐸 ↦ ( ℎ ∈ 𝑇 ↦ ( ( 𝑡 ‘ ℎ ) ∘ ( 𝑢 ‘ ℎ ) ) ) ) |
29 |
4 7 8 9 24 28 25
|
dvhfplusr |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( +g ‘ ( Scalar ‘ 𝑈 ) ) = ( 𝑡 ∈ 𝐸 , 𝑢 ∈ 𝐸 ↦ ( ℎ ∈ 𝑇 ↦ ( ( 𝑡 ‘ ℎ ) ∘ ( 𝑢 ‘ ℎ ) ) ) ) ) |
30 |
12 29
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ) ) → ( +g ‘ ( Scalar ‘ 𝑈 ) ) = ( 𝑡 ∈ 𝐸 , 𝑢 ∈ 𝐸 ↦ ( ℎ ∈ 𝑇 ↦ ( ( 𝑡 ‘ ℎ ) ∘ ( 𝑢 ‘ ℎ ) ) ) ) ) |
31 |
30
|
oveqd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ) ) → ( 𝑠 ( +g ‘ ( Scalar ‘ 𝑈 ) ) 𝑂 ) = ( 𝑠 ( 𝑡 ∈ 𝐸 , 𝑢 ∈ 𝐸 ↦ ( ℎ ∈ 𝑇 ↦ ( ( 𝑡 ‘ ℎ ) ∘ ( 𝑢 ‘ ℎ ) ) ) ) 𝑂 ) ) |
32 |
1 4 7 8 6 28
|
tendo0plr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ 𝐸 ) → ( 𝑠 ( 𝑡 ∈ 𝐸 , 𝑢 ∈ 𝐸 ↦ ( ℎ ∈ 𝑇 ↦ ( ( 𝑡 ‘ ℎ ) ∘ ( 𝑢 ‘ ℎ ) ) ) ) 𝑂 ) = 𝑠 ) |
33 |
12 13 32
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ) ) → ( 𝑠 ( 𝑡 ∈ 𝐸 , 𝑢 ∈ 𝐸 ↦ ( ℎ ∈ 𝑇 ↦ ( ( 𝑡 ‘ ℎ ) ∘ ( 𝑢 ‘ ℎ ) ) ) ) 𝑂 ) = 𝑠 ) |
34 |
31 33
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ) ) → ( 𝑠 ( +g ‘ ( Scalar ‘ 𝑈 ) ) 𝑂 ) = 𝑠 ) |
35 |
34
|
opeq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ) ) → 〈 ( ( 𝑠 ‘ 𝐹 ) ∘ 𝑔 ) , ( 𝑠 ( +g ‘ ( Scalar ‘ 𝑈 ) ) 𝑂 ) 〉 = 〈 ( ( 𝑠 ‘ 𝐹 ) ∘ 𝑔 ) , 𝑠 〉 ) |
36 |
27 35
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ) ) → ( 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) = 〈 ( ( 𝑠 ‘ 𝐹 ) ∘ 𝑔 ) , 𝑠 〉 ) |