Metamath Proof Explorer


Theorem cdlemn2a

Description: Part of proof of Lemma N of Crawley p. 121. (Contributed by NM, 24-Feb-2014)

Ref Expression
Hypotheses cdlemn2a.b B = Base K
cdlemn2a.l ˙ = K
cdlemn2a.j ˙ = join K
cdlemn2a.a A = Atoms K
cdlemn2a.h H = LHyp K
cdlemn2a.t T = LTrn K W
cdlemn2a.r R = trL K W
cdlemn2a.o O = f T I B
cdlemn2a.i I = DIsoB K W
cdlemn2a.u U = DVecH K W
cdlemn2a.n N = LSpan U
cdlemn2a.f F = ι h T | h Q = S
Assertion cdlemn2a K HL W H Q A ¬ Q ˙ W S A ¬ S ˙ W X B X ˙ W S ˙ Q ˙ X N F O I X

Proof

Step Hyp Ref Expression
1 cdlemn2a.b B = Base K
2 cdlemn2a.l ˙ = K
3 cdlemn2a.j ˙ = join K
4 cdlemn2a.a A = Atoms K
5 cdlemn2a.h H = LHyp K
6 cdlemn2a.t T = LTrn K W
7 cdlemn2a.r R = trL K W
8 cdlemn2a.o O = f T I B
9 cdlemn2a.i I = DIsoB K W
10 cdlemn2a.u U = DVecH K W
11 cdlemn2a.n N = LSpan U
12 cdlemn2a.f F = ι h T | h Q = S
13 simp1 K HL W H Q A ¬ Q ˙ W S A ¬ S ˙ W X B X ˙ W S ˙ Q ˙ X K HL W H
14 simp21 K HL W H Q A ¬ Q ˙ W S A ¬ S ˙ W X B X ˙ W S ˙ Q ˙ X Q A ¬ Q ˙ W
15 simp22 K HL W H Q A ¬ Q ˙ W S A ¬ S ˙ W X B X ˙ W S ˙ Q ˙ X S A ¬ S ˙ W
16 2 4 5 6 12 ltrniotacl K HL W H Q A ¬ Q ˙ W S A ¬ S ˙ W F T
17 13 14 15 16 syl3anc K HL W H Q A ¬ Q ˙ W S A ¬ S ˙ W X B X ˙ W S ˙ Q ˙ X F T
18 1 5 6 7 8 10 9 11 dib1dim2 K HL W H F T I R F = N F O
19 13 17 18 syl2anc K HL W H Q A ¬ Q ˙ W S A ¬ S ˙ W X B X ˙ W S ˙ Q ˙ X I R F = N F O
20 1 2 3 4 5 6 7 12 cdlemn2 K HL W H Q A ¬ Q ˙ W S A ¬ S ˙ W X B X ˙ W S ˙ Q ˙ X R F ˙ X
21 1 5 6 7 trlcl K HL W H F T R F B
22 13 17 21 syl2anc K HL W H Q A ¬ Q ˙ W S A ¬ S ˙ W X B X ˙ W S ˙ Q ˙ X R F B
23 2 5 6 7 trlle K HL W H F T R F ˙ W
24 13 17 23 syl2anc K HL W H Q A ¬ Q ˙ W S A ¬ S ˙ W X B X ˙ W S ˙ Q ˙ X R F ˙ W
25 simp23 K HL W H Q A ¬ Q ˙ W S A ¬ S ˙ W X B X ˙ W S ˙ Q ˙ X X B X ˙ W
26 1 2 5 9 dibord K HL W H R F B R F ˙ W X B X ˙ W I R F I X R F ˙ X
27 13 22 24 25 26 syl121anc K HL W H Q A ¬ Q ˙ W S A ¬ S ˙ W X B X ˙ W S ˙ Q ˙ X I R F I X R F ˙ X
28 20 27 mpbird K HL W H Q A ¬ Q ˙ W S A ¬ S ˙ W X B X ˙ W S ˙ Q ˙ X I R F I X
29 19 28 eqsstrrd K HL W H Q A ¬ Q ˙ W S A ¬ S ˙ W X B X ˙ W S ˙ Q ˙ X N F O I X