Metamath Proof Explorer


Theorem cdlemn2a

Description: Part of proof of Lemma N of Crawley p. 121. (Contributed by NM, 24-Feb-2014)

Ref Expression
Hypotheses cdlemn2a.b B=BaseK
cdlemn2a.l ˙=K
cdlemn2a.j ˙=joinK
cdlemn2a.a A=AtomsK
cdlemn2a.h H=LHypK
cdlemn2a.t T=LTrnKW
cdlemn2a.r R=trLKW
cdlemn2a.o O=fTIB
cdlemn2a.i I=DIsoBKW
cdlemn2a.u U=DVecHKW
cdlemn2a.n N=LSpanU
cdlemn2a.f F=ιhT|hQ=S
Assertion cdlemn2a KHLWHQA¬Q˙WSA¬S˙WXBX˙WS˙Q˙XNFOIX

Proof

Step Hyp Ref Expression
1 cdlemn2a.b B=BaseK
2 cdlemn2a.l ˙=K
3 cdlemn2a.j ˙=joinK
4 cdlemn2a.a A=AtomsK
5 cdlemn2a.h H=LHypK
6 cdlemn2a.t T=LTrnKW
7 cdlemn2a.r R=trLKW
8 cdlemn2a.o O=fTIB
9 cdlemn2a.i I=DIsoBKW
10 cdlemn2a.u U=DVecHKW
11 cdlemn2a.n N=LSpanU
12 cdlemn2a.f F=ιhT|hQ=S
13 simp1 KHLWHQA¬Q˙WSA¬S˙WXBX˙WS˙Q˙XKHLWH
14 simp21 KHLWHQA¬Q˙WSA¬S˙WXBX˙WS˙Q˙XQA¬Q˙W
15 simp22 KHLWHQA¬Q˙WSA¬S˙WXBX˙WS˙Q˙XSA¬S˙W
16 2 4 5 6 12 ltrniotacl KHLWHQA¬Q˙WSA¬S˙WFT
17 13 14 15 16 syl3anc KHLWHQA¬Q˙WSA¬S˙WXBX˙WS˙Q˙XFT
18 1 5 6 7 8 10 9 11 dib1dim2 KHLWHFTIRF=NFO
19 13 17 18 syl2anc KHLWHQA¬Q˙WSA¬S˙WXBX˙WS˙Q˙XIRF=NFO
20 1 2 3 4 5 6 7 12 cdlemn2 KHLWHQA¬Q˙WSA¬S˙WXBX˙WS˙Q˙XRF˙X
21 1 5 6 7 trlcl KHLWHFTRFB
22 13 17 21 syl2anc KHLWHQA¬Q˙WSA¬S˙WXBX˙WS˙Q˙XRFB
23 2 5 6 7 trlle KHLWHFTRF˙W
24 13 17 23 syl2anc KHLWHQA¬Q˙WSA¬S˙WXBX˙WS˙Q˙XRF˙W
25 simp23 KHLWHQA¬Q˙WSA¬S˙WXBX˙WS˙Q˙XXBX˙W
26 1 2 5 9 dibord KHLWHRFBRF˙WXBX˙WIRFIXRF˙X
27 13 22 24 25 26 syl121anc KHLWHQA¬Q˙WSA¬S˙WXBX˙WS˙Q˙XIRFIXRF˙X
28 20 27 mpbird KHLWHQA¬Q˙WSA¬S˙WXBX˙WS˙Q˙XIRFIX
29 19 28 eqsstrrd KHLWHQA¬Q˙WSA¬S˙WXBX˙WS˙Q˙XNFOIX