| Step |
Hyp |
Ref |
Expression |
| 1 |
|
diclspsn.l |
|- .<_ = ( le ` K ) |
| 2 |
|
diclspsn.a |
|- A = ( Atoms ` K ) |
| 3 |
|
diclspsn.h |
|- H = ( LHyp ` K ) |
| 4 |
|
diclspsn.p |
|- P = ( ( oc ` K ) ` W ) |
| 5 |
|
diclspsn.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 6 |
|
diclspsn.i |
|- I = ( ( DIsoC ` K ) ` W ) |
| 7 |
|
diclspsn.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 8 |
|
diclspsn.n |
|- N = ( LSpan ` U ) |
| 9 |
|
diclspsn.f |
|- F = ( iota_ f e. T ( f ` P ) = Q ) |
| 10 |
|
df-rab |
|- { v e. ( T X. ( ( TEndo ` K ) ` W ) ) | E. x e. ( Base ` ( Scalar ` U ) ) v = ( x ( .s ` U ) <. F , ( _I |` T ) >. ) } = { v | ( v e. ( T X. ( ( TEndo ` K ) ` W ) ) /\ E. x e. ( Base ` ( Scalar ` U ) ) v = ( x ( .s ` U ) <. F , ( _I |` T ) >. ) ) } |
| 11 |
|
relopabv |
|- Rel { <. y , z >. | ( y = ( z ` F ) /\ z e. ( ( TEndo ` K ) ` W ) ) } |
| 12 |
|
eqid |
|- ( ( TEndo ` K ) ` W ) = ( ( TEndo ` K ) ` W ) |
| 13 |
1 2 3 4 5 12 6 9
|
dicval2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( I ` Q ) = { <. y , z >. | ( y = ( z ` F ) /\ z e. ( ( TEndo ` K ) ` W ) ) } ) |
| 14 |
13
|
releqd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( Rel ( I ` Q ) <-> Rel { <. y , z >. | ( y = ( z ` F ) /\ z e. ( ( TEndo ` K ) ` W ) ) } ) ) |
| 15 |
11 14
|
mpbiri |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> Rel ( I ` Q ) ) |
| 16 |
|
ssrab2 |
|- { v e. ( T X. ( ( TEndo ` K ) ` W ) ) | E. x e. ( Base ` ( Scalar ` U ) ) v = ( x ( .s ` U ) <. F , ( _I |` T ) >. ) } C_ ( T X. ( ( TEndo ` K ) ` W ) ) |
| 17 |
|
relxp |
|- Rel ( T X. ( ( TEndo ` K ) ` W ) ) |
| 18 |
|
relss |
|- ( { v e. ( T X. ( ( TEndo ` K ) ` W ) ) | E. x e. ( Base ` ( Scalar ` U ) ) v = ( x ( .s ` U ) <. F , ( _I |` T ) >. ) } C_ ( T X. ( ( TEndo ` K ) ` W ) ) -> ( Rel ( T X. ( ( TEndo ` K ) ` W ) ) -> Rel { v e. ( T X. ( ( TEndo ` K ) ` W ) ) | E. x e. ( Base ` ( Scalar ` U ) ) v = ( x ( .s ` U ) <. F , ( _I |` T ) >. ) } ) ) |
| 19 |
16 17 18
|
mp2 |
|- Rel { v e. ( T X. ( ( TEndo ` K ) ` W ) ) | E. x e. ( Base ` ( Scalar ` U ) ) v = ( x ( .s ` U ) <. F , ( _I |` T ) >. ) } |
| 20 |
19
|
a1i |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> Rel { v e. ( T X. ( ( TEndo ` K ) ` W ) ) | E. x e. ( Base ` ( Scalar ` U ) ) v = ( x ( .s ` U ) <. F , ( _I |` T ) >. ) } ) |
| 21 |
|
id |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) ) |
| 22 |
|
vex |
|- g e. _V |
| 23 |
|
vex |
|- s e. _V |
| 24 |
1 2 3 4 5 12 6 9 22 23
|
dicopelval2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( <. g , s >. e. ( I ` Q ) <-> ( g = ( s ` F ) /\ s e. ( ( TEndo ` K ) ` W ) ) ) ) |
| 25 |
|
simprl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( g = ( s ` F ) /\ s e. ( ( TEndo ` K ) ` W ) ) ) -> g = ( s ` F ) ) |
| 26 |
|
simpll |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( g = ( s ` F ) /\ s e. ( ( TEndo ` K ) ` W ) ) ) -> ( K e. HL /\ W e. H ) ) |
| 27 |
|
simprr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( g = ( s ` F ) /\ s e. ( ( TEndo ` K ) ` W ) ) ) -> s e. ( ( TEndo ` K ) ` W ) ) |
| 28 |
|
simpl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( K e. HL /\ W e. H ) ) |
| 29 |
1 2 3 4
|
lhpocnel2 |
|- ( ( K e. HL /\ W e. H ) -> ( P e. A /\ -. P .<_ W ) ) |
| 30 |
29
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( P e. A /\ -. P .<_ W ) ) |
| 31 |
|
simpr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
| 32 |
1 2 3 5 9
|
ltrniotacl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> F e. T ) |
| 33 |
28 30 31 32
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> F e. T ) |
| 34 |
33
|
adantr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( g = ( s ` F ) /\ s e. ( ( TEndo ` K ) ` W ) ) ) -> F e. T ) |
| 35 |
3 5 12
|
tendocl |
|- ( ( ( K e. HL /\ W e. H ) /\ s e. ( ( TEndo ` K ) ` W ) /\ F e. T ) -> ( s ` F ) e. T ) |
| 36 |
26 27 34 35
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( g = ( s ` F ) /\ s e. ( ( TEndo ` K ) ` W ) ) ) -> ( s ` F ) e. T ) |
| 37 |
25 36
|
eqeltrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( g = ( s ` F ) /\ s e. ( ( TEndo ` K ) ` W ) ) ) -> g e. T ) |
| 38 |
37 27 25
|
3jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( g = ( s ` F ) /\ s e. ( ( TEndo ` K ) ` W ) ) ) -> ( g e. T /\ s e. ( ( TEndo ` K ) ` W ) /\ g = ( s ` F ) ) ) |
| 39 |
|
simpr3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( g e. T /\ s e. ( ( TEndo ` K ) ` W ) /\ g = ( s ` F ) ) ) -> g = ( s ` F ) ) |
| 40 |
|
simpr2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( g e. T /\ s e. ( ( TEndo ` K ) ` W ) /\ g = ( s ` F ) ) ) -> s e. ( ( TEndo ` K ) ` W ) ) |
| 41 |
39 40
|
jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( g e. T /\ s e. ( ( TEndo ` K ) ` W ) /\ g = ( s ` F ) ) ) -> ( g = ( s ` F ) /\ s e. ( ( TEndo ` K ) ` W ) ) ) |
| 42 |
38 41
|
impbida |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( ( g = ( s ` F ) /\ s e. ( ( TEndo ` K ) ` W ) ) <-> ( g e. T /\ s e. ( ( TEndo ` K ) ` W ) /\ g = ( s ` F ) ) ) ) |
| 43 |
|
eqid |
|- ( Scalar ` U ) = ( Scalar ` U ) |
| 44 |
|
eqid |
|- ( Base ` ( Scalar ` U ) ) = ( Base ` ( Scalar ` U ) ) |
| 45 |
3 12 7 43 44
|
dvhbase |
|- ( ( K e. HL /\ W e. H ) -> ( Base ` ( Scalar ` U ) ) = ( ( TEndo ` K ) ` W ) ) |
| 46 |
45
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( Base ` ( Scalar ` U ) ) = ( ( TEndo ` K ) ` W ) ) |
| 47 |
46
|
rexeqdv |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( E. x e. ( Base ` ( Scalar ` U ) ) <. g , s >. = ( x ( .s ` U ) <. F , ( _I |` T ) >. ) <-> E. x e. ( ( TEndo ` K ) ` W ) <. g , s >. = ( x ( .s ` U ) <. F , ( _I |` T ) >. ) ) ) |
| 48 |
|
simpll |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ x e. ( ( TEndo ` K ) ` W ) ) -> ( K e. HL /\ W e. H ) ) |
| 49 |
|
simpr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ x e. ( ( TEndo ` K ) ` W ) ) -> x e. ( ( TEndo ` K ) ` W ) ) |
| 50 |
33
|
adantr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ x e. ( ( TEndo ` K ) ` W ) ) -> F e. T ) |
| 51 |
3 5 12
|
tendoidcl |
|- ( ( K e. HL /\ W e. H ) -> ( _I |` T ) e. ( ( TEndo ` K ) ` W ) ) |
| 52 |
51
|
ad2antrr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ x e. ( ( TEndo ` K ) ` W ) ) -> ( _I |` T ) e. ( ( TEndo ` K ) ` W ) ) |
| 53 |
|
eqid |
|- ( .s ` U ) = ( .s ` U ) |
| 54 |
3 5 12 7 53
|
dvhopvsca |
|- ( ( ( K e. HL /\ W e. H ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ F e. T /\ ( _I |` T ) e. ( ( TEndo ` K ) ` W ) ) ) -> ( x ( .s ` U ) <. F , ( _I |` T ) >. ) = <. ( x ` F ) , ( x o. ( _I |` T ) ) >. ) |
| 55 |
48 49 50 52 54
|
syl13anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ x e. ( ( TEndo ` K ) ` W ) ) -> ( x ( .s ` U ) <. F , ( _I |` T ) >. ) = <. ( x ` F ) , ( x o. ( _I |` T ) ) >. ) |
| 56 |
55
|
eqeq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ x e. ( ( TEndo ` K ) ` W ) ) -> ( <. g , s >. = ( x ( .s ` U ) <. F , ( _I |` T ) >. ) <-> <. g , s >. = <. ( x ` F ) , ( x o. ( _I |` T ) ) >. ) ) |
| 57 |
22 23
|
opth |
|- ( <. g , s >. = <. ( x ` F ) , ( x o. ( _I |` T ) ) >. <-> ( g = ( x ` F ) /\ s = ( x o. ( _I |` T ) ) ) ) |
| 58 |
56 57
|
bitrdi |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ x e. ( ( TEndo ` K ) ` W ) ) -> ( <. g , s >. = ( x ( .s ` U ) <. F , ( _I |` T ) >. ) <-> ( g = ( x ` F ) /\ s = ( x o. ( _I |` T ) ) ) ) ) |
| 59 |
3 5 12
|
tendo1mulr |
|- ( ( ( K e. HL /\ W e. H ) /\ x e. ( ( TEndo ` K ) ` W ) ) -> ( x o. ( _I |` T ) ) = x ) |
| 60 |
59
|
adantlr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ x e. ( ( TEndo ` K ) ` W ) ) -> ( x o. ( _I |` T ) ) = x ) |
| 61 |
60
|
eqeq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ x e. ( ( TEndo ` K ) ` W ) ) -> ( s = ( x o. ( _I |` T ) ) <-> s = x ) ) |
| 62 |
|
equcom |
|- ( s = x <-> x = s ) |
| 63 |
61 62
|
bitrdi |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ x e. ( ( TEndo ` K ) ` W ) ) -> ( s = ( x o. ( _I |` T ) ) <-> x = s ) ) |
| 64 |
63
|
anbi2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ x e. ( ( TEndo ` K ) ` W ) ) -> ( ( g = ( x ` F ) /\ s = ( x o. ( _I |` T ) ) ) <-> ( g = ( x ` F ) /\ x = s ) ) ) |
| 65 |
58 64
|
bitrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ x e. ( ( TEndo ` K ) ` W ) ) -> ( <. g , s >. = ( x ( .s ` U ) <. F , ( _I |` T ) >. ) <-> ( g = ( x ` F ) /\ x = s ) ) ) |
| 66 |
|
ancom |
|- ( ( g = ( x ` F ) /\ x = s ) <-> ( x = s /\ g = ( x ` F ) ) ) |
| 67 |
65 66
|
bitrdi |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ x e. ( ( TEndo ` K ) ` W ) ) -> ( <. g , s >. = ( x ( .s ` U ) <. F , ( _I |` T ) >. ) <-> ( x = s /\ g = ( x ` F ) ) ) ) |
| 68 |
67
|
rexbidva |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( E. x e. ( ( TEndo ` K ) ` W ) <. g , s >. = ( x ( .s ` U ) <. F , ( _I |` T ) >. ) <-> E. x e. ( ( TEndo ` K ) ` W ) ( x = s /\ g = ( x ` F ) ) ) ) |
| 69 |
47 68
|
bitrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( E. x e. ( Base ` ( Scalar ` U ) ) <. g , s >. = ( x ( .s ` U ) <. F , ( _I |` T ) >. ) <-> E. x e. ( ( TEndo ` K ) ` W ) ( x = s /\ g = ( x ` F ) ) ) ) |
| 70 |
69
|
3anbi3d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( ( g e. T /\ s e. ( ( TEndo ` K ) ` W ) /\ E. x e. ( Base ` ( Scalar ` U ) ) <. g , s >. = ( x ( .s ` U ) <. F , ( _I |` T ) >. ) ) <-> ( g e. T /\ s e. ( ( TEndo ` K ) ` W ) /\ E. x e. ( ( TEndo ` K ) ` W ) ( x = s /\ g = ( x ` F ) ) ) ) ) |
| 71 |
|
fveq1 |
|- ( x = s -> ( x ` F ) = ( s ` F ) ) |
| 72 |
71
|
eqeq2d |
|- ( x = s -> ( g = ( x ` F ) <-> g = ( s ` F ) ) ) |
| 73 |
72
|
ceqsrexv |
|- ( s e. ( ( TEndo ` K ) ` W ) -> ( E. x e. ( ( TEndo ` K ) ` W ) ( x = s /\ g = ( x ` F ) ) <-> g = ( s ` F ) ) ) |
| 74 |
73
|
pm5.32i |
|- ( ( s e. ( ( TEndo ` K ) ` W ) /\ E. x e. ( ( TEndo ` K ) ` W ) ( x = s /\ g = ( x ` F ) ) ) <-> ( s e. ( ( TEndo ` K ) ` W ) /\ g = ( s ` F ) ) ) |
| 75 |
74
|
anbi2i |
|- ( ( g e. T /\ ( s e. ( ( TEndo ` K ) ` W ) /\ E. x e. ( ( TEndo ` K ) ` W ) ( x = s /\ g = ( x ` F ) ) ) ) <-> ( g e. T /\ ( s e. ( ( TEndo ` K ) ` W ) /\ g = ( s ` F ) ) ) ) |
| 76 |
|
3anass |
|- ( ( g e. T /\ s e. ( ( TEndo ` K ) ` W ) /\ E. x e. ( ( TEndo ` K ) ` W ) ( x = s /\ g = ( x ` F ) ) ) <-> ( g e. T /\ ( s e. ( ( TEndo ` K ) ` W ) /\ E. x e. ( ( TEndo ` K ) ` W ) ( x = s /\ g = ( x ` F ) ) ) ) ) |
| 77 |
|
3anass |
|- ( ( g e. T /\ s e. ( ( TEndo ` K ) ` W ) /\ g = ( s ` F ) ) <-> ( g e. T /\ ( s e. ( ( TEndo ` K ) ` W ) /\ g = ( s ` F ) ) ) ) |
| 78 |
75 76 77
|
3bitr4i |
|- ( ( g e. T /\ s e. ( ( TEndo ` K ) ` W ) /\ E. x e. ( ( TEndo ` K ) ` W ) ( x = s /\ g = ( x ` F ) ) ) <-> ( g e. T /\ s e. ( ( TEndo ` K ) ` W ) /\ g = ( s ` F ) ) ) |
| 79 |
70 78
|
bitr2di |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( ( g e. T /\ s e. ( ( TEndo ` K ) ` W ) /\ g = ( s ` F ) ) <-> ( g e. T /\ s e. ( ( TEndo ` K ) ` W ) /\ E. x e. ( Base ` ( Scalar ` U ) ) <. g , s >. = ( x ( .s ` U ) <. F , ( _I |` T ) >. ) ) ) ) |
| 80 |
42 79
|
bitrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( ( g = ( s ` F ) /\ s e. ( ( TEndo ` K ) ` W ) ) <-> ( g e. T /\ s e. ( ( TEndo ` K ) ` W ) /\ E. x e. ( Base ` ( Scalar ` U ) ) <. g , s >. = ( x ( .s ` U ) <. F , ( _I |` T ) >. ) ) ) ) |
| 81 |
|
eqeq1 |
|- ( v = <. g , s >. -> ( v = ( x ( .s ` U ) <. F , ( _I |` T ) >. ) <-> <. g , s >. = ( x ( .s ` U ) <. F , ( _I |` T ) >. ) ) ) |
| 82 |
81
|
rexbidv |
|- ( v = <. g , s >. -> ( E. x e. ( Base ` ( Scalar ` U ) ) v = ( x ( .s ` U ) <. F , ( _I |` T ) >. ) <-> E. x e. ( Base ` ( Scalar ` U ) ) <. g , s >. = ( x ( .s ` U ) <. F , ( _I |` T ) >. ) ) ) |
| 83 |
82
|
rabxp |
|- { v e. ( T X. ( ( TEndo ` K ) ` W ) ) | E. x e. ( Base ` ( Scalar ` U ) ) v = ( x ( .s ` U ) <. F , ( _I |` T ) >. ) } = { <. g , s >. | ( g e. T /\ s e. ( ( TEndo ` K ) ` W ) /\ E. x e. ( Base ` ( Scalar ` U ) ) <. g , s >. = ( x ( .s ` U ) <. F , ( _I |` T ) >. ) ) } |
| 84 |
83
|
eleq2i |
|- ( <. g , s >. e. { v e. ( T X. ( ( TEndo ` K ) ` W ) ) | E. x e. ( Base ` ( Scalar ` U ) ) v = ( x ( .s ` U ) <. F , ( _I |` T ) >. ) } <-> <. g , s >. e. { <. g , s >. | ( g e. T /\ s e. ( ( TEndo ` K ) ` W ) /\ E. x e. ( Base ` ( Scalar ` U ) ) <. g , s >. = ( x ( .s ` U ) <. F , ( _I |` T ) >. ) ) } ) |
| 85 |
|
opabidw |
|- ( <. g , s >. e. { <. g , s >. | ( g e. T /\ s e. ( ( TEndo ` K ) ` W ) /\ E. x e. ( Base ` ( Scalar ` U ) ) <. g , s >. = ( x ( .s ` U ) <. F , ( _I |` T ) >. ) ) } <-> ( g e. T /\ s e. ( ( TEndo ` K ) ` W ) /\ E. x e. ( Base ` ( Scalar ` U ) ) <. g , s >. = ( x ( .s ` U ) <. F , ( _I |` T ) >. ) ) ) |
| 86 |
84 85
|
bitr2i |
|- ( ( g e. T /\ s e. ( ( TEndo ` K ) ` W ) /\ E. x e. ( Base ` ( Scalar ` U ) ) <. g , s >. = ( x ( .s ` U ) <. F , ( _I |` T ) >. ) ) <-> <. g , s >. e. { v e. ( T X. ( ( TEndo ` K ) ` W ) ) | E. x e. ( Base ` ( Scalar ` U ) ) v = ( x ( .s ` U ) <. F , ( _I |` T ) >. ) } ) |
| 87 |
80 86
|
bitrdi |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( ( g = ( s ` F ) /\ s e. ( ( TEndo ` K ) ` W ) ) <-> <. g , s >. e. { v e. ( T X. ( ( TEndo ` K ) ` W ) ) | E. x e. ( Base ` ( Scalar ` U ) ) v = ( x ( .s ` U ) <. F , ( _I |` T ) >. ) } ) ) |
| 88 |
24 87
|
bitrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( <. g , s >. e. ( I ` Q ) <-> <. g , s >. e. { v e. ( T X. ( ( TEndo ` K ) ` W ) ) | E. x e. ( Base ` ( Scalar ` U ) ) v = ( x ( .s ` U ) <. F , ( _I |` T ) >. ) } ) ) |
| 89 |
88
|
eqrelrdv2 |
|- ( ( ( Rel ( I ` Q ) /\ Rel { v e. ( T X. ( ( TEndo ` K ) ` W ) ) | E. x e. ( Base ` ( Scalar ` U ) ) v = ( x ( .s ` U ) <. F , ( _I |` T ) >. ) } ) /\ ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) ) -> ( I ` Q ) = { v e. ( T X. ( ( TEndo ` K ) ` W ) ) | E. x e. ( Base ` ( Scalar ` U ) ) v = ( x ( .s ` U ) <. F , ( _I |` T ) >. ) } ) |
| 90 |
15 20 21 89
|
syl21anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( I ` Q ) = { v e. ( T X. ( ( TEndo ` K ) ` W ) ) | E. x e. ( Base ` ( Scalar ` U ) ) v = ( x ( .s ` U ) <. F , ( _I |` T ) >. ) } ) |
| 91 |
|
simpll |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ x e. ( Base ` ( Scalar ` U ) ) ) -> ( K e. HL /\ W e. H ) ) |
| 92 |
46
|
eleq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( x e. ( Base ` ( Scalar ` U ) ) <-> x e. ( ( TEndo ` K ) ` W ) ) ) |
| 93 |
92
|
biimpa |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ x e. ( Base ` ( Scalar ` U ) ) ) -> x e. ( ( TEndo ` K ) ` W ) ) |
| 94 |
51
|
adantr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( _I |` T ) e. ( ( TEndo ` K ) ` W ) ) |
| 95 |
|
opelxpi |
|- ( ( F e. T /\ ( _I |` T ) e. ( ( TEndo ` K ) ` W ) ) -> <. F , ( _I |` T ) >. e. ( T X. ( ( TEndo ` K ) ` W ) ) ) |
| 96 |
33 94 95
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> <. F , ( _I |` T ) >. e. ( T X. ( ( TEndo ` K ) ` W ) ) ) |
| 97 |
96
|
adantr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ x e. ( Base ` ( Scalar ` U ) ) ) -> <. F , ( _I |` T ) >. e. ( T X. ( ( TEndo ` K ) ` W ) ) ) |
| 98 |
3 5 12 7 53
|
dvhvscacl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( x e. ( ( TEndo ` K ) ` W ) /\ <. F , ( _I |` T ) >. e. ( T X. ( ( TEndo ` K ) ` W ) ) ) ) -> ( x ( .s ` U ) <. F , ( _I |` T ) >. ) e. ( T X. ( ( TEndo ` K ) ` W ) ) ) |
| 99 |
91 93 97 98
|
syl12anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ x e. ( Base ` ( Scalar ` U ) ) ) -> ( x ( .s ` U ) <. F , ( _I |` T ) >. ) e. ( T X. ( ( TEndo ` K ) ` W ) ) ) |
| 100 |
|
eleq1a |
|- ( ( x ( .s ` U ) <. F , ( _I |` T ) >. ) e. ( T X. ( ( TEndo ` K ) ` W ) ) -> ( v = ( x ( .s ` U ) <. F , ( _I |` T ) >. ) -> v e. ( T X. ( ( TEndo ` K ) ` W ) ) ) ) |
| 101 |
99 100
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ x e. ( Base ` ( Scalar ` U ) ) ) -> ( v = ( x ( .s ` U ) <. F , ( _I |` T ) >. ) -> v e. ( T X. ( ( TEndo ` K ) ` W ) ) ) ) |
| 102 |
101
|
rexlimdva |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( E. x e. ( Base ` ( Scalar ` U ) ) v = ( x ( .s ` U ) <. F , ( _I |` T ) >. ) -> v e. ( T X. ( ( TEndo ` K ) ` W ) ) ) ) |
| 103 |
102
|
pm4.71rd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( E. x e. ( Base ` ( Scalar ` U ) ) v = ( x ( .s ` U ) <. F , ( _I |` T ) >. ) <-> ( v e. ( T X. ( ( TEndo ` K ) ` W ) ) /\ E. x e. ( Base ` ( Scalar ` U ) ) v = ( x ( .s ` U ) <. F , ( _I |` T ) >. ) ) ) ) |
| 104 |
103
|
abbidv |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> { v | E. x e. ( Base ` ( Scalar ` U ) ) v = ( x ( .s ` U ) <. F , ( _I |` T ) >. ) } = { v | ( v e. ( T X. ( ( TEndo ` K ) ` W ) ) /\ E. x e. ( Base ` ( Scalar ` U ) ) v = ( x ( .s ` U ) <. F , ( _I |` T ) >. ) ) } ) |
| 105 |
10 90 104
|
3eqtr4a |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( I ` Q ) = { v | E. x e. ( Base ` ( Scalar ` U ) ) v = ( x ( .s ` U ) <. F , ( _I |` T ) >. ) } ) |
| 106 |
3 7 28
|
dvhlmod |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> U e. LMod ) |
| 107 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
| 108 |
3 5 12 7 107
|
dvhelvbasei |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( _I |` T ) e. ( ( TEndo ` K ) ` W ) ) ) -> <. F , ( _I |` T ) >. e. ( Base ` U ) ) |
| 109 |
28 33 94 108
|
syl12anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> <. F , ( _I |` T ) >. e. ( Base ` U ) ) |
| 110 |
43 44 107 53 8
|
lspsn |
|- ( ( U e. LMod /\ <. F , ( _I |` T ) >. e. ( Base ` U ) ) -> ( N ` { <. F , ( _I |` T ) >. } ) = { v | E. x e. ( Base ` ( Scalar ` U ) ) v = ( x ( .s ` U ) <. F , ( _I |` T ) >. ) } ) |
| 111 |
106 109 110
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( N ` { <. F , ( _I |` T ) >. } ) = { v | E. x e. ( Base ` ( Scalar ` U ) ) v = ( x ( .s ` U ) <. F , ( _I |` T ) >. ) } ) |
| 112 |
105 111
|
eqtr4d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( I ` Q ) = ( N ` { <. F , ( _I |` T ) >. } ) ) |