Metamath Proof Explorer


Theorem opabidw

Description: The law of concretion. Special case of Theorem 9.5 of Quine p. 61. Version of opabid with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 14-Apr-1995) (Revised by Gino Giotto, 26-Jan-2024)

Ref Expression
Assertion opabidw
|- ( <. x , y >. e. { <. x , y >. | ph } <-> ph )

Proof

Step Hyp Ref Expression
1 opex
 |-  <. x , y >. e. _V
2 copsexgw
 |-  ( z = <. x , y >. -> ( ph <-> E. x E. y ( z = <. x , y >. /\ ph ) ) )
3 2 bicomd
 |-  ( z = <. x , y >. -> ( E. x E. y ( z = <. x , y >. /\ ph ) <-> ph ) )
4 df-opab
 |-  { <. x , y >. | ph } = { z | E. x E. y ( z = <. x , y >. /\ ph ) }
5 1 3 4 elab2
 |-  ( <. x , y >. e. { <. x , y >. | ph } <-> ph )