Metamath Proof Explorer


Theorem opabid

Description: The law of concretion. Special case of Theorem 9.5 of Quine p. 61. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker opabidw when possible. (Contributed by NM, 14-Apr-1995) (Proof shortened by Andrew Salmon, 25-Jul-2011) (New usage is discouraged.)

Ref Expression
Assertion opabid
|- ( <. x , y >. e. { <. x , y >. | ph } <-> ph )

Proof

Step Hyp Ref Expression
1 opex
 |-  <. x , y >. e. _V
2 copsexg
 |-  ( z = <. x , y >. -> ( ph <-> E. x E. y ( z = <. x , y >. /\ ph ) ) )
3 2 bicomd
 |-  ( z = <. x , y >. -> ( E. x E. y ( z = <. x , y >. /\ ph ) <-> ph ) )
4 df-opab
 |-  { <. x , y >. | ph } = { z | E. x E. y ( z = <. x , y >. /\ ph ) }
5 1 3 4 elab2
 |-  ( <. x , y >. e. { <. x , y >. | ph } <-> ph )