Description: The law of concretion. Special case of Theorem 9.5 of Quine p. 61. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker opabidw when possible. (Contributed by NM, 14-Apr-1995) (Proof shortened by Andrew Salmon, 25-Jul-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | opabid | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ↔ 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex | ⊢ 〈 𝑥 , 𝑦 〉 ∈ V | |
2 | copsexg | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ) ) | |
3 | 2 | bicomd | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ∃ 𝑥 ∃ 𝑦 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) ↔ 𝜑 ) ) |
4 | df-opab | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } = { 𝑧 ∣ ∃ 𝑥 ∃ 𝑦 ( 𝑧 = 〈 𝑥 , 𝑦 〉 ∧ 𝜑 ) } | |
5 | 1 3 4 | elab2 | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } ↔ 𝜑 ) |