| Step |
Hyp |
Ref |
Expression |
| 1 |
|
diclspsn.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 2 |
|
diclspsn.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 3 |
|
diclspsn.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 4 |
|
diclspsn.p |
⊢ 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
diclspsn.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 6 |
|
diclspsn.i |
⊢ 𝐼 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) |
| 7 |
|
diclspsn.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 8 |
|
diclspsn.n |
⊢ 𝑁 = ( LSpan ‘ 𝑈 ) |
| 9 |
|
diclspsn.f |
⊢ 𝐹 = ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑃 ) = 𝑄 ) |
| 10 |
|
df-rab |
⊢ { 𝑣 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ∣ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑣 = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ) } = { 𝑣 ∣ ( 𝑣 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ∧ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑣 = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ) ) } |
| 11 |
|
relopabv |
⊢ Rel { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 = ( 𝑧 ‘ 𝐹 ) ∧ 𝑧 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) } |
| 12 |
|
eqid |
⊢ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
| 13 |
1 2 3 4 5 12 6 9
|
dicval2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝐼 ‘ 𝑄 ) = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 = ( 𝑧 ‘ 𝐹 ) ∧ 𝑧 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) } ) |
| 14 |
13
|
releqd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( Rel ( 𝐼 ‘ 𝑄 ) ↔ Rel { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 = ( 𝑧 ‘ 𝐹 ) ∧ 𝑧 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) } ) ) |
| 15 |
11 14
|
mpbiri |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → Rel ( 𝐼 ‘ 𝑄 ) ) |
| 16 |
|
ssrab2 |
⊢ { 𝑣 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ∣ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑣 = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ) } ⊆ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 17 |
|
relxp |
⊢ Rel ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 18 |
|
relss |
⊢ ( { 𝑣 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ∣ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑣 = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ) } ⊆ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → ( Rel ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → Rel { 𝑣 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ∣ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑣 = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ) } ) ) |
| 19 |
16 17 18
|
mp2 |
⊢ Rel { 𝑣 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ∣ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑣 = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ) } |
| 20 |
19
|
a1i |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → Rel { 𝑣 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ∣ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑣 = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ) } ) |
| 21 |
|
id |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) |
| 22 |
|
vex |
⊢ 𝑔 ∈ V |
| 23 |
|
vex |
⊢ 𝑠 ∈ V |
| 24 |
1 2 3 4 5 12 6 9 22 23
|
dicopelval2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 〈 𝑔 , 𝑠 〉 ∈ ( 𝐼 ‘ 𝑄 ) ↔ ( 𝑔 = ( 𝑠 ‘ 𝐹 ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) |
| 25 |
|
simprl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑔 = ( 𝑠 ‘ 𝐹 ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) → 𝑔 = ( 𝑠 ‘ 𝐹 ) ) |
| 26 |
|
simpll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑔 = ( 𝑠 ‘ 𝐹 ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 27 |
|
simprr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑔 = ( 𝑠 ‘ 𝐹 ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) → 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 28 |
|
simpl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 29 |
1 2 3 4
|
lhpocnel2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
| 30 |
29
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
| 31 |
|
simpr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
| 32 |
1 2 3 5 9
|
ltrniotacl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → 𝐹 ∈ 𝑇 ) |
| 33 |
28 30 31 32
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → 𝐹 ∈ 𝑇 ) |
| 34 |
33
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑔 = ( 𝑠 ‘ 𝐹 ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) → 𝐹 ∈ 𝑇 ) |
| 35 |
3 5 12
|
tendocl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) → ( 𝑠 ‘ 𝐹 ) ∈ 𝑇 ) |
| 36 |
26 27 34 35
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑔 = ( 𝑠 ‘ 𝐹 ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( 𝑠 ‘ 𝐹 ) ∈ 𝑇 ) |
| 37 |
25 36
|
eqeltrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑔 = ( 𝑠 ‘ 𝐹 ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) → 𝑔 ∈ 𝑇 ) |
| 38 |
37 27 25
|
3jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑔 = ( 𝑠 ‘ 𝐹 ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( 𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑔 = ( 𝑠 ‘ 𝐹 ) ) ) |
| 39 |
|
simpr3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑔 = ( 𝑠 ‘ 𝐹 ) ) ) → 𝑔 = ( 𝑠 ‘ 𝐹 ) ) |
| 40 |
|
simpr2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑔 = ( 𝑠 ‘ 𝐹 ) ) ) → 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 41 |
39 40
|
jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑔 = ( 𝑠 ‘ 𝐹 ) ) ) → ( 𝑔 = ( 𝑠 ‘ 𝐹 ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 42 |
38 41
|
impbida |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( ( 𝑔 = ( 𝑠 ‘ 𝐹 ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ↔ ( 𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑔 = ( 𝑠 ‘ 𝐹 ) ) ) ) |
| 43 |
|
eqid |
⊢ ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 ) |
| 44 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑈 ) ) = ( Base ‘ ( Scalar ‘ 𝑈 ) ) |
| 45 |
3 12 7 43 44
|
dvhbase |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( Base ‘ ( Scalar ‘ 𝑈 ) ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 46 |
45
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( Base ‘ ( Scalar ‘ 𝑈 ) ) = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 47 |
46
|
rexeqdv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 〈 𝑔 , 𝑠 〉 = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ) ↔ ∃ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) 〈 𝑔 , 𝑠 〉 = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ) ) ) |
| 48 |
|
simpll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 49 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 50 |
33
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → 𝐹 ∈ 𝑇 ) |
| 51 |
3 5 12
|
tendoidcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( I ↾ 𝑇 ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 52 |
51
|
ad2antrr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → ( I ↾ 𝑇 ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 53 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑈 ) = ( ·𝑠 ‘ 𝑈 ) |
| 54 |
3 5 12 7 53
|
dvhopvsca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ∧ ( I ↾ 𝑇 ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ) = 〈 ( 𝑥 ‘ 𝐹 ) , ( 𝑥 ∘ ( I ↾ 𝑇 ) ) 〉 ) |
| 55 |
48 49 50 52 54
|
syl13anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ) = 〈 ( 𝑥 ‘ 𝐹 ) , ( 𝑥 ∘ ( I ↾ 𝑇 ) ) 〉 ) |
| 56 |
55
|
eqeq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 〈 𝑔 , 𝑠 〉 = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ) ↔ 〈 𝑔 , 𝑠 〉 = 〈 ( 𝑥 ‘ 𝐹 ) , ( 𝑥 ∘ ( I ↾ 𝑇 ) ) 〉 ) ) |
| 57 |
22 23
|
opth |
⊢ ( 〈 𝑔 , 𝑠 〉 = 〈 ( 𝑥 ‘ 𝐹 ) , ( 𝑥 ∘ ( I ↾ 𝑇 ) ) 〉 ↔ ( 𝑔 = ( 𝑥 ‘ 𝐹 ) ∧ 𝑠 = ( 𝑥 ∘ ( I ↾ 𝑇 ) ) ) ) |
| 58 |
56 57
|
bitrdi |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 〈 𝑔 , 𝑠 〉 = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ) ↔ ( 𝑔 = ( 𝑥 ‘ 𝐹 ) ∧ 𝑠 = ( 𝑥 ∘ ( I ↾ 𝑇 ) ) ) ) ) |
| 59 |
3 5 12
|
tendo1mulr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝑥 ∘ ( I ↾ 𝑇 ) ) = 𝑥 ) |
| 60 |
59
|
adantlr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝑥 ∘ ( I ↾ 𝑇 ) ) = 𝑥 ) |
| 61 |
60
|
eqeq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝑠 = ( 𝑥 ∘ ( I ↾ 𝑇 ) ) ↔ 𝑠 = 𝑥 ) ) |
| 62 |
|
equcom |
⊢ ( 𝑠 = 𝑥 ↔ 𝑥 = 𝑠 ) |
| 63 |
61 62
|
bitrdi |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝑠 = ( 𝑥 ∘ ( I ↾ 𝑇 ) ) ↔ 𝑥 = 𝑠 ) ) |
| 64 |
63
|
anbi2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → ( ( 𝑔 = ( 𝑥 ‘ 𝐹 ) ∧ 𝑠 = ( 𝑥 ∘ ( I ↾ 𝑇 ) ) ) ↔ ( 𝑔 = ( 𝑥 ‘ 𝐹 ) ∧ 𝑥 = 𝑠 ) ) ) |
| 65 |
58 64
|
bitrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 〈 𝑔 , 𝑠 〉 = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ) ↔ ( 𝑔 = ( 𝑥 ‘ 𝐹 ) ∧ 𝑥 = 𝑠 ) ) ) |
| 66 |
|
ancom |
⊢ ( ( 𝑔 = ( 𝑥 ‘ 𝐹 ) ∧ 𝑥 = 𝑠 ) ↔ ( 𝑥 = 𝑠 ∧ 𝑔 = ( 𝑥 ‘ 𝐹 ) ) ) |
| 67 |
65 66
|
bitrdi |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 〈 𝑔 , 𝑠 〉 = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ) ↔ ( 𝑥 = 𝑠 ∧ 𝑔 = ( 𝑥 ‘ 𝐹 ) ) ) ) |
| 68 |
67
|
rexbidva |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( ∃ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) 〈 𝑔 , 𝑠 〉 = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ) ↔ ∃ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑥 = 𝑠 ∧ 𝑔 = ( 𝑥 ‘ 𝐹 ) ) ) ) |
| 69 |
47 68
|
bitrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 〈 𝑔 , 𝑠 〉 = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ) ↔ ∃ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑥 = 𝑠 ∧ 𝑔 = ( 𝑥 ‘ 𝐹 ) ) ) ) |
| 70 |
69
|
3anbi3d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( ( 𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 〈 𝑔 , 𝑠 〉 = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ) ) ↔ ( 𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ ∃ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑥 = 𝑠 ∧ 𝑔 = ( 𝑥 ‘ 𝐹 ) ) ) ) ) |
| 71 |
|
fveq1 |
⊢ ( 𝑥 = 𝑠 → ( 𝑥 ‘ 𝐹 ) = ( 𝑠 ‘ 𝐹 ) ) |
| 72 |
71
|
eqeq2d |
⊢ ( 𝑥 = 𝑠 → ( 𝑔 = ( 𝑥 ‘ 𝐹 ) ↔ 𝑔 = ( 𝑠 ‘ 𝐹 ) ) ) |
| 73 |
72
|
ceqsrexv |
⊢ ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) → ( ∃ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑥 = 𝑠 ∧ 𝑔 = ( 𝑥 ‘ 𝐹 ) ) ↔ 𝑔 = ( 𝑠 ‘ 𝐹 ) ) ) |
| 74 |
73
|
pm5.32i |
⊢ ( ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ ∃ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑥 = 𝑠 ∧ 𝑔 = ( 𝑥 ‘ 𝐹 ) ) ) ↔ ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑔 = ( 𝑠 ‘ 𝐹 ) ) ) |
| 75 |
74
|
anbi2i |
⊢ ( ( 𝑔 ∈ 𝑇 ∧ ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ ∃ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑥 = 𝑠 ∧ 𝑔 = ( 𝑥 ‘ 𝐹 ) ) ) ) ↔ ( 𝑔 ∈ 𝑇 ∧ ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑔 = ( 𝑠 ‘ 𝐹 ) ) ) ) |
| 76 |
|
3anass |
⊢ ( ( 𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ ∃ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑥 = 𝑠 ∧ 𝑔 = ( 𝑥 ‘ 𝐹 ) ) ) ↔ ( 𝑔 ∈ 𝑇 ∧ ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ ∃ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑥 = 𝑠 ∧ 𝑔 = ( 𝑥 ‘ 𝐹 ) ) ) ) ) |
| 77 |
|
3anass |
⊢ ( ( 𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑔 = ( 𝑠 ‘ 𝐹 ) ) ↔ ( 𝑔 ∈ 𝑇 ∧ ( 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑔 = ( 𝑠 ‘ 𝐹 ) ) ) ) |
| 78 |
75 76 77
|
3bitr4i |
⊢ ( ( 𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ ∃ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ( 𝑥 = 𝑠 ∧ 𝑔 = ( 𝑥 ‘ 𝐹 ) ) ) ↔ ( 𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑔 = ( 𝑠 ‘ 𝐹 ) ) ) |
| 79 |
70 78
|
bitr2di |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( ( 𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 𝑔 = ( 𝑠 ‘ 𝐹 ) ) ↔ ( 𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 〈 𝑔 , 𝑠 〉 = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ) ) ) ) |
| 80 |
42 79
|
bitrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( ( 𝑔 = ( 𝑠 ‘ 𝐹 ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ↔ ( 𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 〈 𝑔 , 𝑠 〉 = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ) ) ) ) |
| 81 |
|
eqeq1 |
⊢ ( 𝑣 = 〈 𝑔 , 𝑠 〉 → ( 𝑣 = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ) ↔ 〈 𝑔 , 𝑠 〉 = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ) ) ) |
| 82 |
81
|
rexbidv |
⊢ ( 𝑣 = 〈 𝑔 , 𝑠 〉 → ( ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑣 = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ) ↔ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 〈 𝑔 , 𝑠 〉 = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ) ) ) |
| 83 |
82
|
rabxp |
⊢ { 𝑣 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ∣ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑣 = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ) } = { 〈 𝑔 , 𝑠 〉 ∣ ( 𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 〈 𝑔 , 𝑠 〉 = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ) ) } |
| 84 |
83
|
eleq2i |
⊢ ( 〈 𝑔 , 𝑠 〉 ∈ { 𝑣 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ∣ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑣 = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ) } ↔ 〈 𝑔 , 𝑠 〉 ∈ { 〈 𝑔 , 𝑠 〉 ∣ ( 𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 〈 𝑔 , 𝑠 〉 = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ) ) } ) |
| 85 |
|
opabidw |
⊢ ( 〈 𝑔 , 𝑠 〉 ∈ { 〈 𝑔 , 𝑠 〉 ∣ ( 𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 〈 𝑔 , 𝑠 〉 = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ) ) } ↔ ( 𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 〈 𝑔 , 𝑠 〉 = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ) ) ) |
| 86 |
84 85
|
bitr2i |
⊢ ( ( 𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 〈 𝑔 , 𝑠 〉 = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ) ) ↔ 〈 𝑔 , 𝑠 〉 ∈ { 𝑣 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ∣ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑣 = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ) } ) |
| 87 |
80 86
|
bitrdi |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( ( 𝑔 = ( 𝑠 ‘ 𝐹 ) ∧ 𝑠 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ↔ 〈 𝑔 , 𝑠 〉 ∈ { 𝑣 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ∣ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑣 = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ) } ) ) |
| 88 |
24 87
|
bitrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 〈 𝑔 , 𝑠 〉 ∈ ( 𝐼 ‘ 𝑄 ) ↔ 〈 𝑔 , 𝑠 〉 ∈ { 𝑣 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ∣ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑣 = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ) } ) ) |
| 89 |
88
|
eqrelrdv2 |
⊢ ( ( ( Rel ( 𝐼 ‘ 𝑄 ) ∧ Rel { 𝑣 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ∣ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑣 = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ) } ) ∧ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) → ( 𝐼 ‘ 𝑄 ) = { 𝑣 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ∣ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑣 = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ) } ) |
| 90 |
15 20 21 89
|
syl21anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝐼 ‘ 𝑄 ) = { 𝑣 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ∣ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑣 = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ) } ) |
| 91 |
|
simpll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 92 |
46
|
eleq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ↔ 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 93 |
92
|
biimpa |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) → 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 94 |
51
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( I ↾ 𝑇 ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 95 |
|
opelxpi |
⊢ ( ( 𝐹 ∈ 𝑇 ∧ ( I ↾ 𝑇 ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 96 |
33 94 95
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 97 |
96
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) → 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 98 |
3 5 12 7 53
|
dvhvscacl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑥 ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ∧ 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ) ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 99 |
91 93 97 98
|
syl12anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ) ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 100 |
|
eleq1a |
⊢ ( ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ) ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) → ( 𝑣 = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ) → 𝑣 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) |
| 101 |
99 100
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) → ( 𝑣 = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ) → 𝑣 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) |
| 102 |
101
|
rexlimdva |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑣 = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ) → 𝑣 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) |
| 103 |
102
|
pm4.71rd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑣 = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ) ↔ ( 𝑣 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ∧ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑣 = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ) ) ) ) |
| 104 |
103
|
abbidv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → { 𝑣 ∣ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑣 = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ) } = { 𝑣 ∣ ( 𝑣 ∈ ( 𝑇 × ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ∧ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑣 = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ) ) } ) |
| 105 |
10 90 104
|
3eqtr4a |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝐼 ‘ 𝑄 ) = { 𝑣 ∣ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑣 = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ) } ) |
| 106 |
3 7 28
|
dvhlmod |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → 𝑈 ∈ LMod ) |
| 107 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
| 108 |
3 5 12 7 107
|
dvhelvbasei |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐹 ∈ 𝑇 ∧ ( I ↾ 𝑇 ) ∈ ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) ) ) → 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ∈ ( Base ‘ 𝑈 ) ) |
| 109 |
28 33 94 108
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ∈ ( Base ‘ 𝑈 ) ) |
| 110 |
43 44 107 53 8
|
lspsn |
⊢ ( ( 𝑈 ∈ LMod ∧ 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ∈ ( Base ‘ 𝑈 ) ) → ( 𝑁 ‘ { 〈 𝐹 , ( I ↾ 𝑇 ) 〉 } ) = { 𝑣 ∣ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑣 = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ) } ) |
| 111 |
106 109 110
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝑁 ‘ { 〈 𝐹 , ( I ↾ 𝑇 ) 〉 } ) = { 𝑣 ∣ ∃ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) 𝑣 = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) 〈 𝐹 , ( I ↾ 𝑇 ) 〉 ) } ) |
| 112 |
105 111
|
eqtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝐼 ‘ 𝑄 ) = ( 𝑁 ‘ { 〈 𝐹 , ( I ↾ 𝑇 ) 〉 } ) ) |