Step |
Hyp |
Ref |
Expression |
1 |
|
ceqsrexv.1 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ) |
3 |
|
an12 |
⊢ ( ( 𝑥 = 𝐴 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ) |
4 |
3
|
exbii |
⊢ ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ) |
5 |
2 4
|
bitr4i |
⊢ ( ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) ) |
6 |
|
eleq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵 ) ) |
7 |
6 1
|
anbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ↔ ( 𝐴 ∈ 𝐵 ∧ 𝜓 ) ) ) |
8 |
7
|
ceqsexgv |
⊢ ( 𝐴 ∈ 𝐵 → ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) ↔ ( 𝐴 ∈ 𝐵 ∧ 𝜓 ) ) ) |
9 |
8
|
bianabs |
⊢ ( 𝐴 ∈ 𝐵 → ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) ↔ 𝜓 ) ) |
10 |
5 9
|
bitrid |
⊢ ( 𝐴 ∈ 𝐵 → ( ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ 𝜓 ) ) |