Metamath Proof Explorer


Theorem ceqsrexv

Description: Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by NM, 30-Apr-2004)

Ref Expression
Hypothesis ceqsrexv.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
Assertion ceqsrexv ( 𝐴𝐵 → ( ∃ 𝑥𝐵 ( 𝑥 = 𝐴𝜑 ) ↔ 𝜓 ) )

Proof

Step Hyp Ref Expression
1 ceqsrexv.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
2 df-rex ( ∃ 𝑥𝐵 ( 𝑥 = 𝐴𝜑 ) ↔ ∃ 𝑥 ( 𝑥𝐵 ∧ ( 𝑥 = 𝐴𝜑 ) ) )
3 an12 ( ( 𝑥 = 𝐴 ∧ ( 𝑥𝐵𝜑 ) ) ↔ ( 𝑥𝐵 ∧ ( 𝑥 = 𝐴𝜑 ) ) )
4 3 exbii ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ ( 𝑥𝐵𝜑 ) ) ↔ ∃ 𝑥 ( 𝑥𝐵 ∧ ( 𝑥 = 𝐴𝜑 ) ) )
5 2 4 bitr4i ( ∃ 𝑥𝐵 ( 𝑥 = 𝐴𝜑 ) ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ ( 𝑥𝐵𝜑 ) ) )
6 eleq1 ( 𝑥 = 𝐴 → ( 𝑥𝐵𝐴𝐵 ) )
7 6 1 anbi12d ( 𝑥 = 𝐴 → ( ( 𝑥𝐵𝜑 ) ↔ ( 𝐴𝐵𝜓 ) ) )
8 7 ceqsexgv ( 𝐴𝐵 → ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ ( 𝑥𝐵𝜑 ) ) ↔ ( 𝐴𝐵𝜓 ) ) )
9 8 bianabs ( 𝐴𝐵 → ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ ( 𝑥𝐵𝜑 ) ) ↔ 𝜓 ) )
10 5 9 bitrid ( 𝐴𝐵 → ( ∃ 𝑥𝐵 ( 𝑥 = 𝐴𝜑 ) ↔ 𝜓 ) )