Metamath Proof Explorer


Theorem ceqsrexbv

Description: Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by Mario Carneiro, 14-Mar-2014)

Ref Expression
Hypothesis ceqsrexv.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
Assertion ceqsrexbv ( ∃ 𝑥𝐵 ( 𝑥 = 𝐴𝜑 ) ↔ ( 𝐴𝐵𝜓 ) )

Proof

Step Hyp Ref Expression
1 ceqsrexv.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
2 r19.42v ( ∃ 𝑥𝐵 ( 𝐴𝐵 ∧ ( 𝑥 = 𝐴𝜑 ) ) ↔ ( 𝐴𝐵 ∧ ∃ 𝑥𝐵 ( 𝑥 = 𝐴𝜑 ) ) )
3 eleq1 ( 𝑥 = 𝐴 → ( 𝑥𝐵𝐴𝐵 ) )
4 3 adantr ( ( 𝑥 = 𝐴𝜑 ) → ( 𝑥𝐵𝐴𝐵 ) )
5 4 pm5.32ri ( ( 𝑥𝐵 ∧ ( 𝑥 = 𝐴𝜑 ) ) ↔ ( 𝐴𝐵 ∧ ( 𝑥 = 𝐴𝜑 ) ) )
6 5 bicomi ( ( 𝐴𝐵 ∧ ( 𝑥 = 𝐴𝜑 ) ) ↔ ( 𝑥𝐵 ∧ ( 𝑥 = 𝐴𝜑 ) ) )
7 6 baib ( 𝑥𝐵 → ( ( 𝐴𝐵 ∧ ( 𝑥 = 𝐴𝜑 ) ) ↔ ( 𝑥 = 𝐴𝜑 ) ) )
8 7 rexbiia ( ∃ 𝑥𝐵 ( 𝐴𝐵 ∧ ( 𝑥 = 𝐴𝜑 ) ) ↔ ∃ 𝑥𝐵 ( 𝑥 = 𝐴𝜑 ) )
9 1 ceqsrexv ( 𝐴𝐵 → ( ∃ 𝑥𝐵 ( 𝑥 = 𝐴𝜑 ) ↔ 𝜓 ) )
10 9 pm5.32i ( ( 𝐴𝐵 ∧ ∃ 𝑥𝐵 ( 𝑥 = 𝐴𝜑 ) ) ↔ ( 𝐴𝐵𝜓 ) )
11 2 8 10 3bitr3i ( ∃ 𝑥𝐵 ( 𝑥 = 𝐴𝜑 ) ↔ ( 𝐴𝐵𝜓 ) )