Step |
Hyp |
Ref |
Expression |
1 |
|
ceqsrexv.1 |
|- ( x = A -> ( ph <-> ps ) ) |
2 |
|
df-rex |
|- ( E. x e. B ( x = A /\ ph ) <-> E. x ( x e. B /\ ( x = A /\ ph ) ) ) |
3 |
|
an12 |
|- ( ( x = A /\ ( x e. B /\ ph ) ) <-> ( x e. B /\ ( x = A /\ ph ) ) ) |
4 |
3
|
exbii |
|- ( E. x ( x = A /\ ( x e. B /\ ph ) ) <-> E. x ( x e. B /\ ( x = A /\ ph ) ) ) |
5 |
2 4
|
bitr4i |
|- ( E. x e. B ( x = A /\ ph ) <-> E. x ( x = A /\ ( x e. B /\ ph ) ) ) |
6 |
|
eleq1 |
|- ( x = A -> ( x e. B <-> A e. B ) ) |
7 |
6 1
|
anbi12d |
|- ( x = A -> ( ( x e. B /\ ph ) <-> ( A e. B /\ ps ) ) ) |
8 |
7
|
ceqsexgv |
|- ( A e. B -> ( E. x ( x = A /\ ( x e. B /\ ph ) ) <-> ( A e. B /\ ps ) ) ) |
9 |
8
|
bianabs |
|- ( A e. B -> ( E. x ( x = A /\ ( x e. B /\ ph ) ) <-> ps ) ) |
10 |
5 9
|
bitrid |
|- ( A e. B -> ( E. x e. B ( x = A /\ ph ) <-> ps ) ) |