| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemn4.b |
|- B = ( Base ` K ) |
| 2 |
|
cdlemn4.l |
|- .<_ = ( le ` K ) |
| 3 |
|
cdlemn4.a |
|- A = ( Atoms ` K ) |
| 4 |
|
cdlemn4.p |
|- P = ( ( oc ` K ) ` W ) |
| 5 |
|
cdlemn4.h |
|- H = ( LHyp ` K ) |
| 6 |
|
cdlemn4.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 7 |
|
cdlemn4.o |
|- O = ( h e. T |-> ( _I |` B ) ) |
| 8 |
|
cdlemn4.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 9 |
|
cdlemn4.f |
|- F = ( iota_ h e. T ( h ` P ) = Q ) |
| 10 |
|
cdlemn4.g |
|- G = ( iota_ h e. T ( h ` P ) = R ) |
| 11 |
|
cdlemn4.j |
|- J = ( iota_ h e. T ( h ` Q ) = R ) |
| 12 |
|
cdlemn4.s |
|- .+ = ( +g ` U ) |
| 13 |
|
simp1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) -> ( K e. HL /\ W e. H ) ) |
| 14 |
2 3 5 4
|
lhpocnel2 |
|- ( ( K e. HL /\ W e. H ) -> ( P e. A /\ -. P .<_ W ) ) |
| 15 |
13 14
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) -> ( P e. A /\ -. P .<_ W ) ) |
| 16 |
|
simp2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
| 17 |
2 3 5 6 9
|
ltrniotacl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> F e. T ) |
| 18 |
13 15 16 17
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) -> F e. T ) |
| 19 |
|
eqid |
|- ( ( TEndo ` K ) ` W ) = ( ( TEndo ` K ) ` W ) |
| 20 |
5 6 19
|
tendoidcl |
|- ( ( K e. HL /\ W e. H ) -> ( _I |` T ) e. ( ( TEndo ` K ) ` W ) ) |
| 21 |
13 20
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) -> ( _I |` T ) e. ( ( TEndo ` K ) ` W ) ) |
| 22 |
2 3 5 6 11
|
ltrniotacl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) -> J e. T ) |
| 23 |
1 5 6 19 7
|
tendo0cl |
|- ( ( K e. HL /\ W e. H ) -> O e. ( ( TEndo ` K ) ` W ) ) |
| 24 |
13 23
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) -> O e. ( ( TEndo ` K ) ` W ) ) |
| 25 |
|
eqid |
|- ( Scalar ` U ) = ( Scalar ` U ) |
| 26 |
|
eqid |
|- ( +g ` ( Scalar ` U ) ) = ( +g ` ( Scalar ` U ) ) |
| 27 |
5 6 19 8 25 12 26
|
dvhopvadd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( F e. T /\ ( _I |` T ) e. ( ( TEndo ` K ) ` W ) ) /\ ( J e. T /\ O e. ( ( TEndo ` K ) ` W ) ) ) -> ( <. F , ( _I |` T ) >. .+ <. J , O >. ) = <. ( F o. J ) , ( ( _I |` T ) ( +g ` ( Scalar ` U ) ) O ) >. ) |
| 28 |
13 18 21 22 24 27
|
syl122anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) -> ( <. F , ( _I |` T ) >. .+ <. J , O >. ) = <. ( F o. J ) , ( ( _I |` T ) ( +g ` ( Scalar ` U ) ) O ) >. ) |
| 29 |
5 6
|
ltrncom |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ J e. T ) -> ( F o. J ) = ( J o. F ) ) |
| 30 |
13 18 22 29
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) -> ( F o. J ) = ( J o. F ) ) |
| 31 |
2 3 4 5 6 9 10 11
|
cdlemn3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) -> ( J o. F ) = G ) |
| 32 |
30 31
|
eqtrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) -> ( F o. J ) = G ) |
| 33 |
|
eqid |
|- ( ( EDRing ` K ) ` W ) = ( ( EDRing ` K ) ` W ) |
| 34 |
5 33 8 25
|
dvhsca |
|- ( ( K e. HL /\ W e. H ) -> ( Scalar ` U ) = ( ( EDRing ` K ) ` W ) ) |
| 35 |
34
|
fveq2d |
|- ( ( K e. HL /\ W e. H ) -> ( 0g ` ( Scalar ` U ) ) = ( 0g ` ( ( EDRing ` K ) ` W ) ) ) |
| 36 |
|
eqid |
|- ( 0g ` ( ( EDRing ` K ) ` W ) ) = ( 0g ` ( ( EDRing ` K ) ` W ) ) |
| 37 |
1 5 6 33 7 36
|
erng0g |
|- ( ( K e. HL /\ W e. H ) -> ( 0g ` ( ( EDRing ` K ) ` W ) ) = O ) |
| 38 |
35 37
|
eqtrd |
|- ( ( K e. HL /\ W e. H ) -> ( 0g ` ( Scalar ` U ) ) = O ) |
| 39 |
13 38
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) -> ( 0g ` ( Scalar ` U ) ) = O ) |
| 40 |
39
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) -> ( ( _I |` T ) ( +g ` ( Scalar ` U ) ) ( 0g ` ( Scalar ` U ) ) ) = ( ( _I |` T ) ( +g ` ( Scalar ` U ) ) O ) ) |
| 41 |
5 33
|
erngdv |
|- ( ( K e. HL /\ W e. H ) -> ( ( EDRing ` K ) ` W ) e. DivRing ) |
| 42 |
|
drnggrp |
|- ( ( ( EDRing ` K ) ` W ) e. DivRing -> ( ( EDRing ` K ) ` W ) e. Grp ) |
| 43 |
41 42
|
syl |
|- ( ( K e. HL /\ W e. H ) -> ( ( EDRing ` K ) ` W ) e. Grp ) |
| 44 |
34 43
|
eqeltrd |
|- ( ( K e. HL /\ W e. H ) -> ( Scalar ` U ) e. Grp ) |
| 45 |
13 44
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) -> ( Scalar ` U ) e. Grp ) |
| 46 |
|
eqid |
|- ( Base ` ( Scalar ` U ) ) = ( Base ` ( Scalar ` U ) ) |
| 47 |
5 19 8 25 46
|
dvhbase |
|- ( ( K e. HL /\ W e. H ) -> ( Base ` ( Scalar ` U ) ) = ( ( TEndo ` K ) ` W ) ) |
| 48 |
13 47
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) -> ( Base ` ( Scalar ` U ) ) = ( ( TEndo ` K ) ` W ) ) |
| 49 |
21 48
|
eleqtrrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) -> ( _I |` T ) e. ( Base ` ( Scalar ` U ) ) ) |
| 50 |
|
eqid |
|- ( 0g ` ( Scalar ` U ) ) = ( 0g ` ( Scalar ` U ) ) |
| 51 |
46 26 50
|
grprid |
|- ( ( ( Scalar ` U ) e. Grp /\ ( _I |` T ) e. ( Base ` ( Scalar ` U ) ) ) -> ( ( _I |` T ) ( +g ` ( Scalar ` U ) ) ( 0g ` ( Scalar ` U ) ) ) = ( _I |` T ) ) |
| 52 |
45 49 51
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) -> ( ( _I |` T ) ( +g ` ( Scalar ` U ) ) ( 0g ` ( Scalar ` U ) ) ) = ( _I |` T ) ) |
| 53 |
40 52
|
eqtr3d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) -> ( ( _I |` T ) ( +g ` ( Scalar ` U ) ) O ) = ( _I |` T ) ) |
| 54 |
32 53
|
opeq12d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) -> <. ( F o. J ) , ( ( _I |` T ) ( +g ` ( Scalar ` U ) ) O ) >. = <. G , ( _I |` T ) >. ) |
| 55 |
28 54
|
eqtr2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) -> <. G , ( _I |` T ) >. = ( <. F , ( _I |` T ) >. .+ <. J , O >. ) ) |