| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemn11.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
cdlemn11.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
cdlemn11.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 4 |
|
cdlemn11.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 5 |
|
cdlemn11.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 6 |
|
cdlemn11.i |
⊢ 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) |
| 7 |
|
cdlemn11.J |
⊢ 𝐽 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) |
| 8 |
|
cdlemn11.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 9 |
|
cdlemn11.s |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
| 10 |
1 2 3 4 5 8 9 6 7
|
cdlemn5 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ 𝑅 ≤ ( 𝑄 ∨ 𝑋 ) ) → ( 𝐽 ‘ 𝑅 ) ⊆ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ 𝑋 ) ) ) |
| 11 |
10
|
3expia |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ) → ( 𝑅 ≤ ( 𝑄 ∨ 𝑋 ) → ( 𝐽 ‘ 𝑅 ) ⊆ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ 𝑋 ) ) ) ) |
| 12 |
1 2 3 4 5 6 7 8 9
|
cdlemn11 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐽 ‘ 𝑅 ) ⊆ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ 𝑋 ) ) ) → 𝑅 ≤ ( 𝑄 ∨ 𝑋 ) ) |
| 13 |
12
|
3expia |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ) → ( ( 𝐽 ‘ 𝑅 ) ⊆ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ 𝑋 ) ) → 𝑅 ≤ ( 𝑄 ∨ 𝑋 ) ) ) |
| 14 |
11 13
|
impbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ) → ( 𝑅 ≤ ( 𝑄 ∨ 𝑋 ) ↔ ( 𝐽 ‘ 𝑅 ) ⊆ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ 𝑋 ) ) ) ) |