Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
cdlemn
Next ⟩
dihordlem6
Metamath Proof Explorer
Ascii
Unicode
Theorem
cdlemn
Description:
Lemma N of
Crawley
p. 121 line 27.
(Contributed by
NM
, 27-Feb-2014)
Ref
Expression
Hypotheses
cdlemn11.b
⊢
B
=
Base
K
cdlemn11.l
⊢
≤
˙
=
≤
K
cdlemn11.j
⊢
∨
˙
=
join
⁡
K
cdlemn11.a
⊢
A
=
Atoms
⁡
K
cdlemn11.h
⊢
H
=
LHyp
⁡
K
cdlemn11.i
⊢
I
=
DIsoB
⁡
K
⁡
W
cdlemn11.J
⊢
J
=
DIsoC
⁡
K
⁡
W
cdlemn11.u
⊢
U
=
DVecH
⁡
K
⁡
W
cdlemn11.s
⊢
⊕
˙
=
LSSum
⁡
U
Assertion
cdlemn
⊢
K
∈
HL
∧
W
∈
H
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
R
∈
A
∧
¬
R
≤
˙
W
∧
X
∈
B
∧
X
≤
˙
W
→
R
≤
˙
Q
∨
˙
X
↔
J
⁡
R
⊆
J
⁡
Q
⊕
˙
I
⁡
X
Proof
Step
Hyp
Ref
Expression
1
cdlemn11.b
⊢
B
=
Base
K
2
cdlemn11.l
⊢
≤
˙
=
≤
K
3
cdlemn11.j
⊢
∨
˙
=
join
⁡
K
4
cdlemn11.a
⊢
A
=
Atoms
⁡
K
5
cdlemn11.h
⊢
H
=
LHyp
⁡
K
6
cdlemn11.i
⊢
I
=
DIsoB
⁡
K
⁡
W
7
cdlemn11.J
⊢
J
=
DIsoC
⁡
K
⁡
W
8
cdlemn11.u
⊢
U
=
DVecH
⁡
K
⁡
W
9
cdlemn11.s
⊢
⊕
˙
=
LSSum
⁡
U
10
1
2
3
4
5
8
9
6
7
cdlemn5
⊢
K
∈
HL
∧
W
∈
H
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
R
∈
A
∧
¬
R
≤
˙
W
∧
X
∈
B
∧
X
≤
˙
W
∧
R
≤
˙
Q
∨
˙
X
→
J
⁡
R
⊆
J
⁡
Q
⊕
˙
I
⁡
X
11
10
3expia
⊢
K
∈
HL
∧
W
∈
H
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
R
∈
A
∧
¬
R
≤
˙
W
∧
X
∈
B
∧
X
≤
˙
W
→
R
≤
˙
Q
∨
˙
X
→
J
⁡
R
⊆
J
⁡
Q
⊕
˙
I
⁡
X
12
1
2
3
4
5
6
7
8
9
cdlemn11
⊢
K
∈
HL
∧
W
∈
H
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
R
∈
A
∧
¬
R
≤
˙
W
∧
X
∈
B
∧
X
≤
˙
W
∧
J
⁡
R
⊆
J
⁡
Q
⊕
˙
I
⁡
X
→
R
≤
˙
Q
∨
˙
X
13
12
3expia
⊢
K
∈
HL
∧
W
∈
H
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
R
∈
A
∧
¬
R
≤
˙
W
∧
X
∈
B
∧
X
≤
˙
W
→
J
⁡
R
⊆
J
⁡
Q
⊕
˙
I
⁡
X
→
R
≤
˙
Q
∨
˙
X
14
11
13
impbid
⊢
K
∈
HL
∧
W
∈
H
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
R
∈
A
∧
¬
R
≤
˙
W
∧
X
∈
B
∧
X
≤
˙
W
→
R
≤
˙
Q
∨
˙
X
↔
J
⁡
R
⊆
J
⁡
Q
⊕
˙
I
⁡
X