Metamath Proof Explorer


Theorem cdlemn

Description: Lemma N of Crawley p. 121 line 27. (Contributed by NM, 27-Feb-2014)

Ref Expression
Hypotheses cdlemn11.b B = Base K
cdlemn11.l ˙ = K
cdlemn11.j ˙ = join K
cdlemn11.a A = Atoms K
cdlemn11.h H = LHyp K
cdlemn11.i I = DIsoB K W
cdlemn11.J J = DIsoC K W
cdlemn11.u U = DVecH K W
cdlemn11.s ˙ = LSSum U
Assertion cdlemn K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W X B X ˙ W R ˙ Q ˙ X J R J Q ˙ I X

Proof

Step Hyp Ref Expression
1 cdlemn11.b B = Base K
2 cdlemn11.l ˙ = K
3 cdlemn11.j ˙ = join K
4 cdlemn11.a A = Atoms K
5 cdlemn11.h H = LHyp K
6 cdlemn11.i I = DIsoB K W
7 cdlemn11.J J = DIsoC K W
8 cdlemn11.u U = DVecH K W
9 cdlemn11.s ˙ = LSSum U
10 1 2 3 4 5 8 9 6 7 cdlemn5 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W X B X ˙ W R ˙ Q ˙ X J R J Q ˙ I X
11 10 3expia K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W X B X ˙ W R ˙ Q ˙ X J R J Q ˙ I X
12 1 2 3 4 5 6 7 8 9 cdlemn11 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W X B X ˙ W J R J Q ˙ I X R ˙ Q ˙ X
13 12 3expia K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W X B X ˙ W J R J Q ˙ I X R ˙ Q ˙ X
14 11 13 impbid K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W X B X ˙ W R ˙ Q ˙ X J R J Q ˙ I X