Metamath Proof Explorer


Theorem dihordlem6

Description: Part of proof of Lemma N of Crawley p. 122 line 35. (Contributed by NM, 3-Mar-2014)

Ref Expression
Hypotheses dihordlem8.b B = Base K
dihordlem8.l ˙ = K
dihordlem8.a A = Atoms K
dihordlem8.h H = LHyp K
dihordlem8.p P = oc K W
dihordlem8.o O = h T I B
dihordlem8.t T = LTrn K W
dihordlem8.e E = TEndo K W
dihordlem8.u U = DVecH K W
dihordlem8.s + ˙ = + U
dihordlem8.g G = ι h T | h P = R
Assertion dihordlem6 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T s G s + ˙ g O = s G g s

Proof

Step Hyp Ref Expression
1 dihordlem8.b B = Base K
2 dihordlem8.l ˙ = K
3 dihordlem8.a A = Atoms K
4 dihordlem8.h H = LHyp K
5 dihordlem8.p P = oc K W
6 dihordlem8.o O = h T I B
7 dihordlem8.t T = LTrn K W
8 dihordlem8.e E = TEndo K W
9 dihordlem8.u U = DVecH K W
10 dihordlem8.s + ˙ = + U
11 dihordlem8.g G = ι h T | h P = R
12 simp1 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T K HL W H
13 simp2r K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T R A ¬ R ˙ W
14 simp2l K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T Q A ¬ Q ˙ W
15 simp3 K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T s E g T
16 1 2 3 4 5 6 7 8 9 10 11 cdlemn6 K HL W H R A ¬ R ˙ W Q A ¬ Q ˙ W s E g T s G s + ˙ g O = s G g s
17 12 13 14 15 16 syl121anc K HL W H Q A ¬ Q ˙ W R A ¬ R ˙ W s E g T s G s + ˙ g O = s G g s