Metamath Proof Explorer


Theorem cdlemn

Description: Lemma N of Crawley p. 121 line 27. (Contributed by NM, 27-Feb-2014)

Ref Expression
Hypotheses cdlemn11.b
|- B = ( Base ` K )
cdlemn11.l
|- .<_ = ( le ` K )
cdlemn11.j
|- .\/ = ( join ` K )
cdlemn11.a
|- A = ( Atoms ` K )
cdlemn11.h
|- H = ( LHyp ` K )
cdlemn11.i
|- I = ( ( DIsoB ` K ) ` W )
cdlemn11.J
|- J = ( ( DIsoC ` K ) ` W )
cdlemn11.u
|- U = ( ( DVecH ` K ) ` W )
cdlemn11.s
|- .(+) = ( LSSum ` U )
Assertion cdlemn
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ ( X e. B /\ X .<_ W ) ) ) -> ( R .<_ ( Q .\/ X ) <-> ( J ` R ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) )

Proof

Step Hyp Ref Expression
1 cdlemn11.b
 |-  B = ( Base ` K )
2 cdlemn11.l
 |-  .<_ = ( le ` K )
3 cdlemn11.j
 |-  .\/ = ( join ` K )
4 cdlemn11.a
 |-  A = ( Atoms ` K )
5 cdlemn11.h
 |-  H = ( LHyp ` K )
6 cdlemn11.i
 |-  I = ( ( DIsoB ` K ) ` W )
7 cdlemn11.J
 |-  J = ( ( DIsoC ` K ) ` W )
8 cdlemn11.u
 |-  U = ( ( DVecH ` K ) ` W )
9 cdlemn11.s
 |-  .(+) = ( LSSum ` U )
10 1 2 3 4 5 8 9 6 7 cdlemn5
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ R .<_ ( Q .\/ X ) ) -> ( J ` R ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) )
11 10 3expia
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ ( X e. B /\ X .<_ W ) ) ) -> ( R .<_ ( Q .\/ X ) -> ( J ` R ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) )
12 1 2 3 4 5 6 7 8 9 cdlemn11
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` R ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) -> R .<_ ( Q .\/ X ) )
13 12 3expia
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ ( X e. B /\ X .<_ W ) ) ) -> ( ( J ` R ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) -> R .<_ ( Q .\/ X ) ) )
14 11 13 impbid
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ ( X e. B /\ X .<_ W ) ) ) -> ( R .<_ ( Q .\/ X ) <-> ( J ` R ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) )