Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemn11.b |
|- B = ( Base ` K ) |
2 |
|
cdlemn11.l |
|- .<_ = ( le ` K ) |
3 |
|
cdlemn11.j |
|- .\/ = ( join ` K ) |
4 |
|
cdlemn11.a |
|- A = ( Atoms ` K ) |
5 |
|
cdlemn11.h |
|- H = ( LHyp ` K ) |
6 |
|
cdlemn11.i |
|- I = ( ( DIsoB ` K ) ` W ) |
7 |
|
cdlemn11.J |
|- J = ( ( DIsoC ` K ) ` W ) |
8 |
|
cdlemn11.u |
|- U = ( ( DVecH ` K ) ` W ) |
9 |
|
cdlemn11.s |
|- .(+) = ( LSSum ` U ) |
10 |
1 2 3 4 5 8 9 6 7
|
cdlemn5 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ R .<_ ( Q .\/ X ) ) -> ( J ` R ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) |
11 |
10
|
3expia |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ ( X e. B /\ X .<_ W ) ) ) -> ( R .<_ ( Q .\/ X ) -> ( J ` R ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) ) |
12 |
1 2 3 4 5 6 7 8 9
|
cdlemn11 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` R ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) -> R .<_ ( Q .\/ X ) ) |
13 |
12
|
3expia |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ ( X e. B /\ X .<_ W ) ) ) -> ( ( J ` R ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) -> R .<_ ( Q .\/ X ) ) ) |
14 |
11 13
|
impbid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ ( X e. B /\ X .<_ W ) ) ) -> ( R .<_ ( Q .\/ X ) <-> ( J ` R ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) ) |