Metamath Proof Explorer


Theorem cdlemn11

Description: Part of proof of Lemma N of Crawley p. 121 line 37. (Contributed by NM, 27-Feb-2014)

Ref Expression
Hypotheses cdlemn11.b
|- B = ( Base ` K )
cdlemn11.l
|- .<_ = ( le ` K )
cdlemn11.j
|- .\/ = ( join ` K )
cdlemn11.a
|- A = ( Atoms ` K )
cdlemn11.h
|- H = ( LHyp ` K )
cdlemn11.i
|- I = ( ( DIsoB ` K ) ` W )
cdlemn11.J
|- J = ( ( DIsoC ` K ) ` W )
cdlemn11.u
|- U = ( ( DVecH ` K ) ` W )
cdlemn11.s
|- .(+) = ( LSSum ` U )
Assertion cdlemn11
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` R ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) -> R .<_ ( Q .\/ X ) )

Proof

Step Hyp Ref Expression
1 cdlemn11.b
 |-  B = ( Base ` K )
2 cdlemn11.l
 |-  .<_ = ( le ` K )
3 cdlemn11.j
 |-  .\/ = ( join ` K )
4 cdlemn11.a
 |-  A = ( Atoms ` K )
5 cdlemn11.h
 |-  H = ( LHyp ` K )
6 cdlemn11.i
 |-  I = ( ( DIsoB ` K ) ` W )
7 cdlemn11.J
 |-  J = ( ( DIsoC ` K ) ` W )
8 cdlemn11.u
 |-  U = ( ( DVecH ` K ) ` W )
9 cdlemn11.s
 |-  .(+) = ( LSSum ` U )
10 eqid
 |-  ( ( oc ` K ) ` W ) = ( ( oc ` K ) ` W )
11 eqid
 |-  ( h e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) = ( h e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) )
12 eqid
 |-  ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W )
13 eqid
 |-  ( ( trL ` K ) ` W ) = ( ( trL ` K ) ` W )
14 eqid
 |-  ( ( TEndo ` K ) ` W ) = ( ( TEndo ` K ) ` W )
15 eqid
 |-  ( +g ` U ) = ( +g ` U )
16 eqid
 |-  ( iota_ h e. ( ( LTrn ` K ) ` W ) ( h ` ( ( oc ` K ) ` W ) ) = Q ) = ( iota_ h e. ( ( LTrn ` K ) ` W ) ( h ` ( ( oc ` K ) ` W ) ) = Q )
17 eqid
 |-  ( iota_ h e. ( ( LTrn ` K ) ` W ) ( h ` ( ( oc ` K ) ` W ) ) = R ) = ( iota_ h e. ( ( LTrn ` K ) ` W ) ( h ` ( ( oc ` K ) ` W ) ) = R )
18 1 2 3 4 5 10 11 12 13 14 6 7 8 15 9 16 17 cdlemn11pre
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` R ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) -> R .<_ ( Q .\/ X ) )