Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemn11.b |
|- B = ( Base ` K ) |
2 |
|
cdlemn11.l |
|- .<_ = ( le ` K ) |
3 |
|
cdlemn11.j |
|- .\/ = ( join ` K ) |
4 |
|
cdlemn11.a |
|- A = ( Atoms ` K ) |
5 |
|
cdlemn11.h |
|- H = ( LHyp ` K ) |
6 |
|
cdlemn11.i |
|- I = ( ( DIsoB ` K ) ` W ) |
7 |
|
cdlemn11.J |
|- J = ( ( DIsoC ` K ) ` W ) |
8 |
|
cdlemn11.u |
|- U = ( ( DVecH ` K ) ` W ) |
9 |
|
cdlemn11.s |
|- .(+) = ( LSSum ` U ) |
10 |
|
eqid |
|- ( ( oc ` K ) ` W ) = ( ( oc ` K ) ` W ) |
11 |
|
eqid |
|- ( h e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) = ( h e. ( ( LTrn ` K ) ` W ) |-> ( _I |` B ) ) |
12 |
|
eqid |
|- ( ( LTrn ` K ) ` W ) = ( ( LTrn ` K ) ` W ) |
13 |
|
eqid |
|- ( ( trL ` K ) ` W ) = ( ( trL ` K ) ` W ) |
14 |
|
eqid |
|- ( ( TEndo ` K ) ` W ) = ( ( TEndo ` K ) ` W ) |
15 |
|
eqid |
|- ( +g ` U ) = ( +g ` U ) |
16 |
|
eqid |
|- ( iota_ h e. ( ( LTrn ` K ) ` W ) ( h ` ( ( oc ` K ) ` W ) ) = Q ) = ( iota_ h e. ( ( LTrn ` K ) ` W ) ( h ` ( ( oc ` K ) ` W ) ) = Q ) |
17 |
|
eqid |
|- ( iota_ h e. ( ( LTrn ` K ) ` W ) ( h ` ( ( oc ` K ) ` W ) ) = R ) = ( iota_ h e. ( ( LTrn ` K ) ` W ) ( h ` ( ( oc ` K ) ` W ) ) = R ) |
18 |
1 2 3 4 5 10 11 12 13 14 6 7 8 15 9 16 17
|
cdlemn11pre |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` R ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) -> R .<_ ( Q .\/ X ) ) |