| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemn11a.b |
|- B = ( Base ` K ) |
| 2 |
|
cdlemn11a.l |
|- .<_ = ( le ` K ) |
| 3 |
|
cdlemn11a.j |
|- .\/ = ( join ` K ) |
| 4 |
|
cdlemn11a.a |
|- A = ( Atoms ` K ) |
| 5 |
|
cdlemn11a.h |
|- H = ( LHyp ` K ) |
| 6 |
|
cdlemn11a.p |
|- P = ( ( oc ` K ) ` W ) |
| 7 |
|
cdlemn11a.o |
|- O = ( h e. T |-> ( _I |` B ) ) |
| 8 |
|
cdlemn11a.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 9 |
|
cdlemn11a.r |
|- R = ( ( trL ` K ) ` W ) |
| 10 |
|
cdlemn11a.e |
|- E = ( ( TEndo ` K ) ` W ) |
| 11 |
|
cdlemn11a.i |
|- I = ( ( DIsoB ` K ) ` W ) |
| 12 |
|
cdlemn11a.J |
|- J = ( ( DIsoC ` K ) ` W ) |
| 13 |
|
cdlemn11a.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 14 |
|
cdlemn11a.d |
|- .+ = ( +g ` U ) |
| 15 |
|
cdlemn11a.s |
|- .(+) = ( LSSum ` U ) |
| 16 |
|
cdlemn11a.f |
|- F = ( iota_ h e. T ( h ` P ) = Q ) |
| 17 |
|
cdlemn11a.g |
|- G = ( iota_ h e. T ( h ` P ) = N ) |
| 18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
|
cdlemn11c |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) -> E. y e. ( J ` Q ) E. z e. ( I ` X ) <. G , ( _I |` T ) >. = ( y .+ z ) ) |
| 19 |
|
simp1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) -> ( K e. HL /\ W e. H ) ) |
| 20 |
|
simp21 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
| 21 |
2 4 5 6 8 10 12 16
|
dicelval3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( y e. ( J ` Q ) <-> E. s e. E y = <. ( s ` F ) , s >. ) ) |
| 22 |
19 20 21
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) -> ( y e. ( J ` Q ) <-> E. s e. E y = <. ( s ` F ) , s >. ) ) |
| 23 |
|
simp23 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) -> ( X e. B /\ X .<_ W ) ) |
| 24 |
1 2 5 8 9 7 11
|
dibelval3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( z e. ( I ` X ) <-> E. g e. T ( z = <. g , O >. /\ ( R ` g ) .<_ X ) ) ) |
| 25 |
19 23 24
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) -> ( z e. ( I ` X ) <-> E. g e. T ( z = <. g , O >. /\ ( R ` g ) .<_ X ) ) ) |
| 26 |
22 25
|
anbi12d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) -> ( ( y e. ( J ` Q ) /\ z e. ( I ` X ) ) <-> ( E. s e. E y = <. ( s ` F ) , s >. /\ E. g e. T ( z = <. g , O >. /\ ( R ` g ) .<_ X ) ) ) ) |
| 27 |
|
reeanv |
|- ( E. s e. E E. g e. T ( y = <. ( s ` F ) , s >. /\ ( z = <. g , O >. /\ ( R ` g ) .<_ X ) ) <-> ( E. s e. E y = <. ( s ` F ) , s >. /\ E. g e. T ( z = <. g , O >. /\ ( R ` g ) .<_ X ) ) ) |
| 28 |
|
simpl1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) /\ ( ( s e. E /\ g e. T ) /\ ( R ` g ) .<_ X /\ <. G , ( _I |` T ) >. = ( <. ( s ` F ) , s >. .+ <. g , O >. ) ) ) -> ( K e. HL /\ W e. H ) ) |
| 29 |
|
simpl21 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) /\ ( ( s e. E /\ g e. T ) /\ ( R ` g ) .<_ X /\ <. G , ( _I |` T ) >. = ( <. ( s ` F ) , s >. .+ <. g , O >. ) ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
| 30 |
|
simpl22 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) /\ ( ( s e. E /\ g e. T ) /\ ( R ` g ) .<_ X /\ <. G , ( _I |` T ) >. = ( <. ( s ` F ) , s >. .+ <. g , O >. ) ) ) -> ( N e. A /\ -. N .<_ W ) ) |
| 31 |
|
simpl23 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) /\ ( ( s e. E /\ g e. T ) /\ ( R ` g ) .<_ X /\ <. G , ( _I |` T ) >. = ( <. ( s ` F ) , s >. .+ <. g , O >. ) ) ) -> ( X e. B /\ X .<_ W ) ) |
| 32 |
|
simpr1r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) /\ ( ( s e. E /\ g e. T ) /\ ( R ` g ) .<_ X /\ <. G , ( _I |` T ) >. = ( <. ( s ` F ) , s >. .+ <. g , O >. ) ) ) -> g e. T ) |
| 33 |
|
simpr1l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) /\ ( ( s e. E /\ g e. T ) /\ ( R ` g ) .<_ X /\ <. G , ( _I |` T ) >. = ( <. ( s ` F ) , s >. .+ <. g , O >. ) ) ) -> s e. E ) |
| 34 |
|
simpr3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) /\ ( ( s e. E /\ g e. T ) /\ ( R ` g ) .<_ X /\ <. G , ( _I |` T ) >. = ( <. ( s ` F ) , s >. .+ <. g , O >. ) ) ) -> <. G , ( _I |` T ) >. = ( <. ( s ` F ) , s >. .+ <. g , O >. ) ) |
| 35 |
1 2 4 5 6 7 8 10 13 14 16 17
|
cdlemn9 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) ) /\ ( s e. E /\ g e. T /\ <. G , ( _I |` T ) >. = ( <. ( s ` F ) , s >. .+ <. g , O >. ) ) ) -> ( g ` Q ) = N ) |
| 36 |
28 29 30 33 32 34 35
|
syl123anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) /\ ( ( s e. E /\ g e. T ) /\ ( R ` g ) .<_ X /\ <. G , ( _I |` T ) >. = ( <. ( s ` F ) , s >. .+ <. g , O >. ) ) ) -> ( g ` Q ) = N ) |
| 37 |
|
simpr2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) /\ ( ( s e. E /\ g e. T ) /\ ( R ` g ) .<_ X /\ <. G , ( _I |` T ) >. = ( <. ( s ` F ) , s >. .+ <. g , O >. ) ) ) -> ( R ` g ) .<_ X ) |
| 38 |
1 2 3 4 5 8 9
|
cdlemn10 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( g e. T /\ ( g ` Q ) = N /\ ( R ` g ) .<_ X ) ) -> N .<_ ( Q .\/ X ) ) |
| 39 |
28 29 30 31 32 36 37 38
|
syl133anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) /\ ( ( s e. E /\ g e. T ) /\ ( R ` g ) .<_ X /\ <. G , ( _I |` T ) >. = ( <. ( s ` F ) , s >. .+ <. g , O >. ) ) ) -> N .<_ ( Q .\/ X ) ) |
| 40 |
39
|
3exp2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) -> ( ( s e. E /\ g e. T ) -> ( ( R ` g ) .<_ X -> ( <. G , ( _I |` T ) >. = ( <. ( s ` F ) , s >. .+ <. g , O >. ) -> N .<_ ( Q .\/ X ) ) ) ) ) |
| 41 |
|
oveq12 |
|- ( ( y = <. ( s ` F ) , s >. /\ z = <. g , O >. ) -> ( y .+ z ) = ( <. ( s ` F ) , s >. .+ <. g , O >. ) ) |
| 42 |
41
|
eqeq2d |
|- ( ( y = <. ( s ` F ) , s >. /\ z = <. g , O >. ) -> ( <. G , ( _I |` T ) >. = ( y .+ z ) <-> <. G , ( _I |` T ) >. = ( <. ( s ` F ) , s >. .+ <. g , O >. ) ) ) |
| 43 |
42
|
imbi1d |
|- ( ( y = <. ( s ` F ) , s >. /\ z = <. g , O >. ) -> ( ( <. G , ( _I |` T ) >. = ( y .+ z ) -> N .<_ ( Q .\/ X ) ) <-> ( <. G , ( _I |` T ) >. = ( <. ( s ` F ) , s >. .+ <. g , O >. ) -> N .<_ ( Q .\/ X ) ) ) ) |
| 44 |
43
|
imbi2d |
|- ( ( y = <. ( s ` F ) , s >. /\ z = <. g , O >. ) -> ( ( ( R ` g ) .<_ X -> ( <. G , ( _I |` T ) >. = ( y .+ z ) -> N .<_ ( Q .\/ X ) ) ) <-> ( ( R ` g ) .<_ X -> ( <. G , ( _I |` T ) >. = ( <. ( s ` F ) , s >. .+ <. g , O >. ) -> N .<_ ( Q .\/ X ) ) ) ) ) |
| 45 |
44
|
biimprd |
|- ( ( y = <. ( s ` F ) , s >. /\ z = <. g , O >. ) -> ( ( ( R ` g ) .<_ X -> ( <. G , ( _I |` T ) >. = ( <. ( s ` F ) , s >. .+ <. g , O >. ) -> N .<_ ( Q .\/ X ) ) ) -> ( ( R ` g ) .<_ X -> ( <. G , ( _I |` T ) >. = ( y .+ z ) -> N .<_ ( Q .\/ X ) ) ) ) ) |
| 46 |
45
|
com23 |
|- ( ( y = <. ( s ` F ) , s >. /\ z = <. g , O >. ) -> ( ( R ` g ) .<_ X -> ( ( ( R ` g ) .<_ X -> ( <. G , ( _I |` T ) >. = ( <. ( s ` F ) , s >. .+ <. g , O >. ) -> N .<_ ( Q .\/ X ) ) ) -> ( <. G , ( _I |` T ) >. = ( y .+ z ) -> N .<_ ( Q .\/ X ) ) ) ) ) |
| 47 |
46
|
impr |
|- ( ( y = <. ( s ` F ) , s >. /\ ( z = <. g , O >. /\ ( R ` g ) .<_ X ) ) -> ( ( ( R ` g ) .<_ X -> ( <. G , ( _I |` T ) >. = ( <. ( s ` F ) , s >. .+ <. g , O >. ) -> N .<_ ( Q .\/ X ) ) ) -> ( <. G , ( _I |` T ) >. = ( y .+ z ) -> N .<_ ( Q .\/ X ) ) ) ) |
| 48 |
47
|
com12 |
|- ( ( ( R ` g ) .<_ X -> ( <. G , ( _I |` T ) >. = ( <. ( s ` F ) , s >. .+ <. g , O >. ) -> N .<_ ( Q .\/ X ) ) ) -> ( ( y = <. ( s ` F ) , s >. /\ ( z = <. g , O >. /\ ( R ` g ) .<_ X ) ) -> ( <. G , ( _I |` T ) >. = ( y .+ z ) -> N .<_ ( Q .\/ X ) ) ) ) |
| 49 |
40 48
|
syl6 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) -> ( ( s e. E /\ g e. T ) -> ( ( y = <. ( s ` F ) , s >. /\ ( z = <. g , O >. /\ ( R ` g ) .<_ X ) ) -> ( <. G , ( _I |` T ) >. = ( y .+ z ) -> N .<_ ( Q .\/ X ) ) ) ) ) |
| 50 |
49
|
rexlimdvv |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) -> ( E. s e. E E. g e. T ( y = <. ( s ` F ) , s >. /\ ( z = <. g , O >. /\ ( R ` g ) .<_ X ) ) -> ( <. G , ( _I |` T ) >. = ( y .+ z ) -> N .<_ ( Q .\/ X ) ) ) ) |
| 51 |
27 50
|
biimtrrid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) -> ( ( E. s e. E y = <. ( s ` F ) , s >. /\ E. g e. T ( z = <. g , O >. /\ ( R ` g ) .<_ X ) ) -> ( <. G , ( _I |` T ) >. = ( y .+ z ) -> N .<_ ( Q .\/ X ) ) ) ) |
| 52 |
26 51
|
sylbid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) -> ( ( y e. ( J ` Q ) /\ z e. ( I ` X ) ) -> ( <. G , ( _I |` T ) >. = ( y .+ z ) -> N .<_ ( Q .\/ X ) ) ) ) |
| 53 |
52
|
rexlimdvv |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) -> ( E. y e. ( J ` Q ) E. z e. ( I ` X ) <. G , ( _I |` T ) >. = ( y .+ z ) -> N .<_ ( Q .\/ X ) ) ) |
| 54 |
18 53
|
mpd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) -> N .<_ ( Q .\/ X ) ) |