Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemn11a.b |
|- B = ( Base ` K ) |
2 |
|
cdlemn11a.l |
|- .<_ = ( le ` K ) |
3 |
|
cdlemn11a.j |
|- .\/ = ( join ` K ) |
4 |
|
cdlemn11a.a |
|- A = ( Atoms ` K ) |
5 |
|
cdlemn11a.h |
|- H = ( LHyp ` K ) |
6 |
|
cdlemn11a.p |
|- P = ( ( oc ` K ) ` W ) |
7 |
|
cdlemn11a.o |
|- O = ( h e. T |-> ( _I |` B ) ) |
8 |
|
cdlemn11a.t |
|- T = ( ( LTrn ` K ) ` W ) |
9 |
|
cdlemn11a.r |
|- R = ( ( trL ` K ) ` W ) |
10 |
|
cdlemn11a.e |
|- E = ( ( TEndo ` K ) ` W ) |
11 |
|
cdlemn11a.i |
|- I = ( ( DIsoB ` K ) ` W ) |
12 |
|
cdlemn11a.J |
|- J = ( ( DIsoC ` K ) ` W ) |
13 |
|
cdlemn11a.u |
|- U = ( ( DVecH ` K ) ` W ) |
14 |
|
cdlemn11a.d |
|- .+ = ( +g ` U ) |
15 |
|
cdlemn11a.s |
|- .(+) = ( LSSum ` U ) |
16 |
|
cdlemn11a.f |
|- F = ( iota_ h e. T ( h ` P ) = Q ) |
17 |
|
cdlemn11a.g |
|- G = ( iota_ h e. T ( h ` P ) = N ) |
18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
|
cdlemn11b |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) -> <. G , ( _I |` T ) >. e. ( ( J ` Q ) .(+) ( I ` X ) ) ) |
19 |
|
simp1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) -> ( K e. HL /\ W e. H ) ) |
20 |
5 13 19
|
dvhlmod |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) -> U e. LMod ) |
21 |
|
eqid |
|- ( LSubSp ` U ) = ( LSubSp ` U ) |
22 |
21
|
lsssssubg |
|- ( U e. LMod -> ( LSubSp ` U ) C_ ( SubGrp ` U ) ) |
23 |
20 22
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) -> ( LSubSp ` U ) C_ ( SubGrp ` U ) ) |
24 |
|
simp21 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
25 |
2 4 5 13 12 21
|
diclss |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( J ` Q ) e. ( LSubSp ` U ) ) |
26 |
19 24 25
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) -> ( J ` Q ) e. ( LSubSp ` U ) ) |
27 |
23 26
|
sseldd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) -> ( J ` Q ) e. ( SubGrp ` U ) ) |
28 |
|
simp23l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) -> X e. B ) |
29 |
|
simp23r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) -> X .<_ W ) |
30 |
1 2 5 13 11 21
|
diblss |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X .<_ W ) ) -> ( I ` X ) e. ( LSubSp ` U ) ) |
31 |
19 28 29 30
|
syl12anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) -> ( I ` X ) e. ( LSubSp ` U ) ) |
32 |
23 31
|
sseldd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) -> ( I ` X ) e. ( SubGrp ` U ) ) |
33 |
14 15
|
lsmelval |
|- ( ( ( J ` Q ) e. ( SubGrp ` U ) /\ ( I ` X ) e. ( SubGrp ` U ) ) -> ( <. G , ( _I |` T ) >. e. ( ( J ` Q ) .(+) ( I ` X ) ) <-> E. y e. ( J ` Q ) E. z e. ( I ` X ) <. G , ( _I |` T ) >. = ( y .+ z ) ) ) |
34 |
27 32 33
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) -> ( <. G , ( _I |` T ) >. e. ( ( J ` Q ) .(+) ( I ` X ) ) <-> E. y e. ( J ` Q ) E. z e. ( I ` X ) <. G , ( _I |` T ) >. = ( y .+ z ) ) ) |
35 |
18 34
|
mpbid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) -> E. y e. ( J ` Q ) E. z e. ( I ` X ) <. G , ( _I |` T ) >. = ( y .+ z ) ) |