Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemn11a.b |
|- B = ( Base ` K ) |
2 |
|
cdlemn11a.l |
|- .<_ = ( le ` K ) |
3 |
|
cdlemn11a.j |
|- .\/ = ( join ` K ) |
4 |
|
cdlemn11a.a |
|- A = ( Atoms ` K ) |
5 |
|
cdlemn11a.h |
|- H = ( LHyp ` K ) |
6 |
|
cdlemn11a.p |
|- P = ( ( oc ` K ) ` W ) |
7 |
|
cdlemn11a.o |
|- O = ( h e. T |-> ( _I |` B ) ) |
8 |
|
cdlemn11a.t |
|- T = ( ( LTrn ` K ) ` W ) |
9 |
|
cdlemn11a.r |
|- R = ( ( trL ` K ) ` W ) |
10 |
|
cdlemn11a.e |
|- E = ( ( TEndo ` K ) ` W ) |
11 |
|
cdlemn11a.i |
|- I = ( ( DIsoB ` K ) ` W ) |
12 |
|
cdlemn11a.J |
|- J = ( ( DIsoC ` K ) ` W ) |
13 |
|
cdlemn11a.u |
|- U = ( ( DVecH ` K ) ` W ) |
14 |
|
cdlemn11a.d |
|- .+ = ( +g ` U ) |
15 |
|
cdlemn11a.s |
|- .(+) = ( LSSum ` U ) |
16 |
|
cdlemn11a.f |
|- F = ( iota_ h e. T ( h ` P ) = Q ) |
17 |
|
cdlemn11a.g |
|- G = ( iota_ h e. T ( h ` P ) = N ) |
18 |
|
simp3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) -> ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) |
19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
|
cdlemn11a |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) -> <. G , ( _I |` T ) >. e. ( J ` N ) ) |
20 |
18 19
|
sseldd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( N e. A /\ -. N .<_ W ) /\ ( X e. B /\ X .<_ W ) ) /\ ( J ` N ) C_ ( ( J ` Q ) .(+) ( I ` X ) ) ) -> <. G , ( _I |` T ) >. e. ( ( J ` Q ) .(+) ( I ` X ) ) ) |