Metamath Proof Explorer


Theorem cdlemn11b

Description: Part of proof of Lemma N of Crawley p. 121 line 37. (Contributed by NM, 27-Feb-2014)

Ref Expression
Hypotheses cdlemn11a.b B = Base K
cdlemn11a.l ˙ = K
cdlemn11a.j ˙ = join K
cdlemn11a.a A = Atoms K
cdlemn11a.h H = LHyp K
cdlemn11a.p P = oc K W
cdlemn11a.o O = h T I B
cdlemn11a.t T = LTrn K W
cdlemn11a.r R = trL K W
cdlemn11a.e E = TEndo K W
cdlemn11a.i I = DIsoB K W
cdlemn11a.J J = DIsoC K W
cdlemn11a.u U = DVecH K W
cdlemn11a.d + ˙ = + U
cdlemn11a.s ˙ = LSSum U
cdlemn11a.f F = ι h T | h P = Q
cdlemn11a.g G = ι h T | h P = N
Assertion cdlemn11b K HL W H Q A ¬ Q ˙ W N A ¬ N ˙ W X B X ˙ W J N J Q ˙ I X G I T J Q ˙ I X

Proof

Step Hyp Ref Expression
1 cdlemn11a.b B = Base K
2 cdlemn11a.l ˙ = K
3 cdlemn11a.j ˙ = join K
4 cdlemn11a.a A = Atoms K
5 cdlemn11a.h H = LHyp K
6 cdlemn11a.p P = oc K W
7 cdlemn11a.o O = h T I B
8 cdlemn11a.t T = LTrn K W
9 cdlemn11a.r R = trL K W
10 cdlemn11a.e E = TEndo K W
11 cdlemn11a.i I = DIsoB K W
12 cdlemn11a.J J = DIsoC K W
13 cdlemn11a.u U = DVecH K W
14 cdlemn11a.d + ˙ = + U
15 cdlemn11a.s ˙ = LSSum U
16 cdlemn11a.f F = ι h T | h P = Q
17 cdlemn11a.g G = ι h T | h P = N
18 simp3 K HL W H Q A ¬ Q ˙ W N A ¬ N ˙ W X B X ˙ W J N J Q ˙ I X J N J Q ˙ I X
19 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 cdlemn11a K HL W H Q A ¬ Q ˙ W N A ¬ N ˙ W X B X ˙ W J N J Q ˙ I X G I T J N
20 18 19 sseldd K HL W H Q A ¬ Q ˙ W N A ¬ N ˙ W X B X ˙ W J N J Q ˙ I X G I T J Q ˙ I X