Metamath Proof Explorer


Theorem cdlemn11c

Description: Part of proof of Lemma N of Crawley p. 121 line 37. (Contributed by NM, 27-Feb-2014)

Ref Expression
Hypotheses cdlemn11a.b B=BaseK
cdlemn11a.l ˙=K
cdlemn11a.j ˙=joinK
cdlemn11a.a A=AtomsK
cdlemn11a.h H=LHypK
cdlemn11a.p P=ocKW
cdlemn11a.o O=hTIB
cdlemn11a.t T=LTrnKW
cdlemn11a.r R=trLKW
cdlemn11a.e E=TEndoKW
cdlemn11a.i I=DIsoBKW
cdlemn11a.J J=DIsoCKW
cdlemn11a.u U=DVecHKW
cdlemn11a.d +˙=+U
cdlemn11a.s ˙=LSSumU
cdlemn11a.f F=ιhT|hP=Q
cdlemn11a.g G=ιhT|hP=N
Assertion cdlemn11c KHLWHQA¬Q˙WNA¬N˙WXBX˙WJNJQ˙IXyJQzIXGIT=y+˙z

Proof

Step Hyp Ref Expression
1 cdlemn11a.b B=BaseK
2 cdlemn11a.l ˙=K
3 cdlemn11a.j ˙=joinK
4 cdlemn11a.a A=AtomsK
5 cdlemn11a.h H=LHypK
6 cdlemn11a.p P=ocKW
7 cdlemn11a.o O=hTIB
8 cdlemn11a.t T=LTrnKW
9 cdlemn11a.r R=trLKW
10 cdlemn11a.e E=TEndoKW
11 cdlemn11a.i I=DIsoBKW
12 cdlemn11a.J J=DIsoCKW
13 cdlemn11a.u U=DVecHKW
14 cdlemn11a.d +˙=+U
15 cdlemn11a.s ˙=LSSumU
16 cdlemn11a.f F=ιhT|hP=Q
17 cdlemn11a.g G=ιhT|hP=N
18 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 cdlemn11b KHLWHQA¬Q˙WNA¬N˙WXBX˙WJNJQ˙IXGITJQ˙IX
19 simp1 KHLWHQA¬Q˙WNA¬N˙WXBX˙WJNJQ˙IXKHLWH
20 5 13 19 dvhlmod KHLWHQA¬Q˙WNA¬N˙WXBX˙WJNJQ˙IXULMod
21 eqid LSubSpU=LSubSpU
22 21 lsssssubg ULModLSubSpUSubGrpU
23 20 22 syl KHLWHQA¬Q˙WNA¬N˙WXBX˙WJNJQ˙IXLSubSpUSubGrpU
24 simp21 KHLWHQA¬Q˙WNA¬N˙WXBX˙WJNJQ˙IXQA¬Q˙W
25 2 4 5 13 12 21 diclss KHLWHQA¬Q˙WJQLSubSpU
26 19 24 25 syl2anc KHLWHQA¬Q˙WNA¬N˙WXBX˙WJNJQ˙IXJQLSubSpU
27 23 26 sseldd KHLWHQA¬Q˙WNA¬N˙WXBX˙WJNJQ˙IXJQSubGrpU
28 simp23l KHLWHQA¬Q˙WNA¬N˙WXBX˙WJNJQ˙IXXB
29 simp23r KHLWHQA¬Q˙WNA¬N˙WXBX˙WJNJQ˙IXX˙W
30 1 2 5 13 11 21 diblss KHLWHXBX˙WIXLSubSpU
31 19 28 29 30 syl12anc KHLWHQA¬Q˙WNA¬N˙WXBX˙WJNJQ˙IXIXLSubSpU
32 23 31 sseldd KHLWHQA¬Q˙WNA¬N˙WXBX˙WJNJQ˙IXIXSubGrpU
33 14 15 lsmelval JQSubGrpUIXSubGrpUGITJQ˙IXyJQzIXGIT=y+˙z
34 27 32 33 syl2anc KHLWHQA¬Q˙WNA¬N˙WXBX˙WJNJQ˙IXGITJQ˙IXyJQzIXGIT=y+˙z
35 18 34 mpbid KHLWHQA¬Q˙WNA¬N˙WXBX˙WJNJQ˙IXyJQzIXGIT=y+˙z