Metamath Proof Explorer


Theorem cdlemn11c

Description: Part of proof of Lemma N of Crawley p. 121 line 37. (Contributed by NM, 27-Feb-2014)

Ref Expression
Hypotheses cdlemn11a.b 𝐵 = ( Base ‘ 𝐾 )
cdlemn11a.l = ( le ‘ 𝐾 )
cdlemn11a.j = ( join ‘ 𝐾 )
cdlemn11a.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemn11a.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemn11a.p 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
cdlemn11a.o 𝑂 = ( 𝑇 ↦ ( I ↾ 𝐵 ) )
cdlemn11a.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemn11a.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
cdlemn11a.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
cdlemn11a.i 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
cdlemn11a.J 𝐽 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 )
cdlemn11a.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
cdlemn11a.d + = ( +g𝑈 )
cdlemn11a.s = ( LSSum ‘ 𝑈 )
cdlemn11a.f 𝐹 = ( 𝑇 ( 𝑃 ) = 𝑄 )
cdlemn11a.g 𝐺 = ( 𝑇 ( 𝑃 ) = 𝑁 )
Assertion cdlemn11c ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝐽𝑁 ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) ) → ∃ 𝑦 ∈ ( 𝐽𝑄 ) ∃ 𝑧 ∈ ( 𝐼𝑋 ) ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( 𝑦 + 𝑧 ) )

Proof

Step Hyp Ref Expression
1 cdlemn11a.b 𝐵 = ( Base ‘ 𝐾 )
2 cdlemn11a.l = ( le ‘ 𝐾 )
3 cdlemn11a.j = ( join ‘ 𝐾 )
4 cdlemn11a.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdlemn11a.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdlemn11a.p 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
7 cdlemn11a.o 𝑂 = ( 𝑇 ↦ ( I ↾ 𝐵 ) )
8 cdlemn11a.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
9 cdlemn11a.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
10 cdlemn11a.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
11 cdlemn11a.i 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
12 cdlemn11a.J 𝐽 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 )
13 cdlemn11a.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
14 cdlemn11a.d + = ( +g𝑈 )
15 cdlemn11a.s = ( LSSum ‘ 𝑈 )
16 cdlemn11a.f 𝐹 = ( 𝑇 ( 𝑃 ) = 𝑄 )
17 cdlemn11a.g 𝐺 = ( 𝑇 ( 𝑃 ) = 𝑁 )
18 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 cdlemn11b ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝐽𝑁 ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) ) → ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ ∈ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) )
19 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝐽𝑁 ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
20 5 13 19 dvhlmod ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝐽𝑁 ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) ) → 𝑈 ∈ LMod )
21 eqid ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 )
22 21 lsssssubg ( 𝑈 ∈ LMod → ( LSubSp ‘ 𝑈 ) ⊆ ( SubGrp ‘ 𝑈 ) )
23 20 22 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝐽𝑁 ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) ) → ( LSubSp ‘ 𝑈 ) ⊆ ( SubGrp ‘ 𝑈 ) )
24 simp21 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝐽𝑁 ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
25 2 4 5 13 12 21 diclss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝐽𝑄 ) ∈ ( LSubSp ‘ 𝑈 ) )
26 19 24 25 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝐽𝑁 ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) ) → ( 𝐽𝑄 ) ∈ ( LSubSp ‘ 𝑈 ) )
27 23 26 sseldd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝐽𝑁 ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) ) → ( 𝐽𝑄 ) ∈ ( SubGrp ‘ 𝑈 ) )
28 simp23l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝐽𝑁 ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) ) → 𝑋𝐵 )
29 simp23r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝐽𝑁 ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) ) → 𝑋 𝑊 )
30 1 2 5 13 11 21 diblss ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( 𝐼𝑋 ) ∈ ( LSubSp ‘ 𝑈 ) )
31 19 28 29 30 syl12anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝐽𝑁 ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) ) → ( 𝐼𝑋 ) ∈ ( LSubSp ‘ 𝑈 ) )
32 23 31 sseldd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝐽𝑁 ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) ) → ( 𝐼𝑋 ) ∈ ( SubGrp ‘ 𝑈 ) )
33 14 15 lsmelval ( ( ( 𝐽𝑄 ) ∈ ( SubGrp ‘ 𝑈 ) ∧ ( 𝐼𝑋 ) ∈ ( SubGrp ‘ 𝑈 ) ) → ( ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ ∈ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) ↔ ∃ 𝑦 ∈ ( 𝐽𝑄 ) ∃ 𝑧 ∈ ( 𝐼𝑋 ) ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( 𝑦 + 𝑧 ) ) )
34 27 32 33 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝐽𝑁 ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) ) → ( ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ ∈ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) ↔ ∃ 𝑦 ∈ ( 𝐽𝑄 ) ∃ 𝑧 ∈ ( 𝐼𝑋 ) ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( 𝑦 + 𝑧 ) ) )
35 18 34 mpbid ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝐽𝑁 ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) ) → ∃ 𝑦 ∈ ( 𝐽𝑄 ) ∃ 𝑧 ∈ ( 𝐼𝑋 ) ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( 𝑦 + 𝑧 ) )