Metamath Proof Explorer


Theorem cdlemn11pre

Description: Part of proof of Lemma N of Crawley p. 121 line 37. TODO: combine cdlemn11a , cdlemn11b , cdlemn11c , cdlemn11pre into one? (Contributed by NM, 27-Feb-2014)

Ref Expression
Hypotheses cdlemn11a.b 𝐵 = ( Base ‘ 𝐾 )
cdlemn11a.l = ( le ‘ 𝐾 )
cdlemn11a.j = ( join ‘ 𝐾 )
cdlemn11a.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemn11a.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemn11a.p 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
cdlemn11a.o 𝑂 = ( 𝑇 ↦ ( I ↾ 𝐵 ) )
cdlemn11a.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemn11a.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
cdlemn11a.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
cdlemn11a.i 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
cdlemn11a.J 𝐽 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 )
cdlemn11a.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
cdlemn11a.d + = ( +g𝑈 )
cdlemn11a.s = ( LSSum ‘ 𝑈 )
cdlemn11a.f 𝐹 = ( 𝑇 ( 𝑃 ) = 𝑄 )
cdlemn11a.g 𝐺 = ( 𝑇 ( 𝑃 ) = 𝑁 )
Assertion cdlemn11pre ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝐽𝑁 ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) ) → 𝑁 ( 𝑄 𝑋 ) )

Proof

Step Hyp Ref Expression
1 cdlemn11a.b 𝐵 = ( Base ‘ 𝐾 )
2 cdlemn11a.l = ( le ‘ 𝐾 )
3 cdlemn11a.j = ( join ‘ 𝐾 )
4 cdlemn11a.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdlemn11a.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdlemn11a.p 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 )
7 cdlemn11a.o 𝑂 = ( 𝑇 ↦ ( I ↾ 𝐵 ) )
8 cdlemn11a.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
9 cdlemn11a.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
10 cdlemn11a.e 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 )
11 cdlemn11a.i 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 )
12 cdlemn11a.J 𝐽 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 )
13 cdlemn11a.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
14 cdlemn11a.d + = ( +g𝑈 )
15 cdlemn11a.s = ( LSSum ‘ 𝑈 )
16 cdlemn11a.f 𝐹 = ( 𝑇 ( 𝑃 ) = 𝑄 )
17 cdlemn11a.g 𝐺 = ( 𝑇 ( 𝑃 ) = 𝑁 )
18 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 cdlemn11c ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝐽𝑁 ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) ) → ∃ 𝑦 ∈ ( 𝐽𝑄 ) ∃ 𝑧 ∈ ( 𝐼𝑋 ) ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( 𝑦 + 𝑧 ) )
19 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝐽𝑁 ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
20 simp21 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝐽𝑁 ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
21 2 4 5 6 8 10 12 16 dicelval3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝑦 ∈ ( 𝐽𝑄 ) ↔ ∃ 𝑠𝐸 𝑦 = ⟨ ( 𝑠𝐹 ) , 𝑠 ⟩ ) )
22 19 20 21 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝐽𝑁 ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) ) → ( 𝑦 ∈ ( 𝐽𝑄 ) ↔ ∃ 𝑠𝐸 𝑦 = ⟨ ( 𝑠𝐹 ) , 𝑠 ⟩ ) )
23 simp23 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝐽𝑁 ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) ) → ( 𝑋𝐵𝑋 𝑊 ) )
24 1 2 5 8 9 7 11 dibelval3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) → ( 𝑧 ∈ ( 𝐼𝑋 ) ↔ ∃ 𝑔𝑇 ( 𝑧 = ⟨ 𝑔 , 𝑂 ⟩ ∧ ( 𝑅𝑔 ) 𝑋 ) ) )
25 19 23 24 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝐽𝑁 ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) ) → ( 𝑧 ∈ ( 𝐼𝑋 ) ↔ ∃ 𝑔𝑇 ( 𝑧 = ⟨ 𝑔 , 𝑂 ⟩ ∧ ( 𝑅𝑔 ) 𝑋 ) ) )
26 22 25 anbi12d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝐽𝑁 ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) ) → ( ( 𝑦 ∈ ( 𝐽𝑄 ) ∧ 𝑧 ∈ ( 𝐼𝑋 ) ) ↔ ( ∃ 𝑠𝐸 𝑦 = ⟨ ( 𝑠𝐹 ) , 𝑠 ⟩ ∧ ∃ 𝑔𝑇 ( 𝑧 = ⟨ 𝑔 , 𝑂 ⟩ ∧ ( 𝑅𝑔 ) 𝑋 ) ) ) )
27 reeanv ( ∃ 𝑠𝐸𝑔𝑇 ( 𝑦 = ⟨ ( 𝑠𝐹 ) , 𝑠 ⟩ ∧ ( 𝑧 = ⟨ 𝑔 , 𝑂 ⟩ ∧ ( 𝑅𝑔 ) 𝑋 ) ) ↔ ( ∃ 𝑠𝐸 𝑦 = ⟨ ( 𝑠𝐹 ) , 𝑠 ⟩ ∧ ∃ 𝑔𝑇 ( 𝑧 = ⟨ 𝑔 , 𝑂 ⟩ ∧ ( 𝑅𝑔 ) 𝑋 ) ) )
28 simpl1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝐽𝑁 ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) ) ∧ ( ( 𝑠𝐸𝑔𝑇 ) ∧ ( 𝑅𝑔 ) 𝑋 ∧ ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( ⟨ ( 𝑠𝐹 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
29 simpl21 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝐽𝑁 ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) ) ∧ ( ( 𝑠𝐸𝑔𝑇 ) ∧ ( 𝑅𝑔 ) 𝑋 ∧ ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( ⟨ ( 𝑠𝐹 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
30 simpl22 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝐽𝑁 ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) ) ∧ ( ( 𝑠𝐸𝑔𝑇 ) ∧ ( 𝑅𝑔 ) 𝑋 ∧ ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( ⟨ ( 𝑠𝐹 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) )
31 simpl23 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝐽𝑁 ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) ) ∧ ( ( 𝑠𝐸𝑔𝑇 ) ∧ ( 𝑅𝑔 ) 𝑋 ∧ ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( ⟨ ( 𝑠𝐹 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → ( 𝑋𝐵𝑋 𝑊 ) )
32 simpr1r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝐽𝑁 ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) ) ∧ ( ( 𝑠𝐸𝑔𝑇 ) ∧ ( 𝑅𝑔 ) 𝑋 ∧ ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( ⟨ ( 𝑠𝐹 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → 𝑔𝑇 )
33 simpr1l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝐽𝑁 ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) ) ∧ ( ( 𝑠𝐸𝑔𝑇 ) ∧ ( 𝑅𝑔 ) 𝑋 ∧ ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( ⟨ ( 𝑠𝐹 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → 𝑠𝐸 )
34 simpr3 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝐽𝑁 ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) ) ∧ ( ( 𝑠𝐸𝑔𝑇 ) ∧ ( 𝑅𝑔 ) 𝑋 ∧ ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( ⟨ ( 𝑠𝐹 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( ⟨ ( 𝑠𝐹 ) , 𝑠+𝑔 , 𝑂 ⟩ ) )
35 1 2 4 5 6 7 8 10 13 14 16 17 cdlemn9 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ) ∧ ( 𝑠𝐸𝑔𝑇 ∧ ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( ⟨ ( 𝑠𝐹 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → ( 𝑔𝑄 ) = 𝑁 )
36 28 29 30 33 32 34 35 syl123anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝐽𝑁 ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) ) ∧ ( ( 𝑠𝐸𝑔𝑇 ) ∧ ( 𝑅𝑔 ) 𝑋 ∧ ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( ⟨ ( 𝑠𝐹 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → ( 𝑔𝑄 ) = 𝑁 )
37 simpr2 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝐽𝑁 ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) ) ∧ ( ( 𝑠𝐸𝑔𝑇 ) ∧ ( 𝑅𝑔 ) 𝑋 ∧ ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( ⟨ ( 𝑠𝐹 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → ( 𝑅𝑔 ) 𝑋 )
38 1 2 3 4 5 8 9 cdlemn10 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑔𝑇 ∧ ( 𝑔𝑄 ) = 𝑁 ∧ ( 𝑅𝑔 ) 𝑋 ) ) → 𝑁 ( 𝑄 𝑋 ) )
39 28 29 30 31 32 36 37 38 syl133anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝐽𝑁 ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) ) ∧ ( ( 𝑠𝐸𝑔𝑇 ) ∧ ( 𝑅𝑔 ) 𝑋 ∧ ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( ⟨ ( 𝑠𝐹 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) ) → 𝑁 ( 𝑄 𝑋 ) )
40 39 3exp2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝐽𝑁 ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) ) → ( ( 𝑠𝐸𝑔𝑇 ) → ( ( 𝑅𝑔 ) 𝑋 → ( ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( ⟨ ( 𝑠𝐹 ) , 𝑠+𝑔 , 𝑂 ⟩ ) → 𝑁 ( 𝑄 𝑋 ) ) ) ) )
41 oveq12 ( ( 𝑦 = ⟨ ( 𝑠𝐹 ) , 𝑠 ⟩ ∧ 𝑧 = ⟨ 𝑔 , 𝑂 ⟩ ) → ( 𝑦 + 𝑧 ) = ( ⟨ ( 𝑠𝐹 ) , 𝑠+𝑔 , 𝑂 ⟩ ) )
42 41 eqeq2d ( ( 𝑦 = ⟨ ( 𝑠𝐹 ) , 𝑠 ⟩ ∧ 𝑧 = ⟨ 𝑔 , 𝑂 ⟩ ) → ( ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( 𝑦 + 𝑧 ) ↔ ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( ⟨ ( 𝑠𝐹 ) , 𝑠+𝑔 , 𝑂 ⟩ ) ) )
43 42 imbi1d ( ( 𝑦 = ⟨ ( 𝑠𝐹 ) , 𝑠 ⟩ ∧ 𝑧 = ⟨ 𝑔 , 𝑂 ⟩ ) → ( ( ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( 𝑦 + 𝑧 ) → 𝑁 ( 𝑄 𝑋 ) ) ↔ ( ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( ⟨ ( 𝑠𝐹 ) , 𝑠+𝑔 , 𝑂 ⟩ ) → 𝑁 ( 𝑄 𝑋 ) ) ) )
44 43 imbi2d ( ( 𝑦 = ⟨ ( 𝑠𝐹 ) , 𝑠 ⟩ ∧ 𝑧 = ⟨ 𝑔 , 𝑂 ⟩ ) → ( ( ( 𝑅𝑔 ) 𝑋 → ( ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( 𝑦 + 𝑧 ) → 𝑁 ( 𝑄 𝑋 ) ) ) ↔ ( ( 𝑅𝑔 ) 𝑋 → ( ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( ⟨ ( 𝑠𝐹 ) , 𝑠+𝑔 , 𝑂 ⟩ ) → 𝑁 ( 𝑄 𝑋 ) ) ) ) )
45 44 biimprd ( ( 𝑦 = ⟨ ( 𝑠𝐹 ) , 𝑠 ⟩ ∧ 𝑧 = ⟨ 𝑔 , 𝑂 ⟩ ) → ( ( ( 𝑅𝑔 ) 𝑋 → ( ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( ⟨ ( 𝑠𝐹 ) , 𝑠+𝑔 , 𝑂 ⟩ ) → 𝑁 ( 𝑄 𝑋 ) ) ) → ( ( 𝑅𝑔 ) 𝑋 → ( ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( 𝑦 + 𝑧 ) → 𝑁 ( 𝑄 𝑋 ) ) ) ) )
46 45 com23 ( ( 𝑦 = ⟨ ( 𝑠𝐹 ) , 𝑠 ⟩ ∧ 𝑧 = ⟨ 𝑔 , 𝑂 ⟩ ) → ( ( 𝑅𝑔 ) 𝑋 → ( ( ( 𝑅𝑔 ) 𝑋 → ( ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( ⟨ ( 𝑠𝐹 ) , 𝑠+𝑔 , 𝑂 ⟩ ) → 𝑁 ( 𝑄 𝑋 ) ) ) → ( ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( 𝑦 + 𝑧 ) → 𝑁 ( 𝑄 𝑋 ) ) ) ) )
47 46 impr ( ( 𝑦 = ⟨ ( 𝑠𝐹 ) , 𝑠 ⟩ ∧ ( 𝑧 = ⟨ 𝑔 , 𝑂 ⟩ ∧ ( 𝑅𝑔 ) 𝑋 ) ) → ( ( ( 𝑅𝑔 ) 𝑋 → ( ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( ⟨ ( 𝑠𝐹 ) , 𝑠+𝑔 , 𝑂 ⟩ ) → 𝑁 ( 𝑄 𝑋 ) ) ) → ( ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( 𝑦 + 𝑧 ) → 𝑁 ( 𝑄 𝑋 ) ) ) )
48 47 com12 ( ( ( 𝑅𝑔 ) 𝑋 → ( ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( ⟨ ( 𝑠𝐹 ) , 𝑠+𝑔 , 𝑂 ⟩ ) → 𝑁 ( 𝑄 𝑋 ) ) ) → ( ( 𝑦 = ⟨ ( 𝑠𝐹 ) , 𝑠 ⟩ ∧ ( 𝑧 = ⟨ 𝑔 , 𝑂 ⟩ ∧ ( 𝑅𝑔 ) 𝑋 ) ) → ( ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( 𝑦 + 𝑧 ) → 𝑁 ( 𝑄 𝑋 ) ) ) )
49 40 48 syl6 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝐽𝑁 ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) ) → ( ( 𝑠𝐸𝑔𝑇 ) → ( ( 𝑦 = ⟨ ( 𝑠𝐹 ) , 𝑠 ⟩ ∧ ( 𝑧 = ⟨ 𝑔 , 𝑂 ⟩ ∧ ( 𝑅𝑔 ) 𝑋 ) ) → ( ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( 𝑦 + 𝑧 ) → 𝑁 ( 𝑄 𝑋 ) ) ) ) )
50 49 rexlimdvv ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝐽𝑁 ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) ) → ( ∃ 𝑠𝐸𝑔𝑇 ( 𝑦 = ⟨ ( 𝑠𝐹 ) , 𝑠 ⟩ ∧ ( 𝑧 = ⟨ 𝑔 , 𝑂 ⟩ ∧ ( 𝑅𝑔 ) 𝑋 ) ) → ( ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( 𝑦 + 𝑧 ) → 𝑁 ( 𝑄 𝑋 ) ) ) )
51 27 50 syl5bir ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝐽𝑁 ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) ) → ( ( ∃ 𝑠𝐸 𝑦 = ⟨ ( 𝑠𝐹 ) , 𝑠 ⟩ ∧ ∃ 𝑔𝑇 ( 𝑧 = ⟨ 𝑔 , 𝑂 ⟩ ∧ ( 𝑅𝑔 ) 𝑋 ) ) → ( ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( 𝑦 + 𝑧 ) → 𝑁 ( 𝑄 𝑋 ) ) ) )
52 26 51 sylbid ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝐽𝑁 ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) ) → ( ( 𝑦 ∈ ( 𝐽𝑄 ) ∧ 𝑧 ∈ ( 𝐼𝑋 ) ) → ( ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( 𝑦 + 𝑧 ) → 𝑁 ( 𝑄 𝑋 ) ) ) )
53 52 rexlimdvv ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝐽𝑁 ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) ) → ( ∃ 𝑦 ∈ ( 𝐽𝑄 ) ∃ 𝑧 ∈ ( 𝐼𝑋 ) ⟨ 𝐺 , ( I ↾ 𝑇 ) ⟩ = ( 𝑦 + 𝑧 ) → 𝑁 ( 𝑄 𝑋 ) ) )
54 18 53 mpd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑁𝐴 ∧ ¬ 𝑁 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝐽𝑁 ) ⊆ ( ( 𝐽𝑄 ) ( 𝐼𝑋 ) ) ) → 𝑁 ( 𝑄 𝑋 ) )