Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemn11a.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdlemn11a.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cdlemn11a.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cdlemn11a.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
cdlemn11a.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
cdlemn11a.p |
⊢ 𝑃 = ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
cdlemn11a.o |
⊢ 𝑂 = ( ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵 ) ) |
8 |
|
cdlemn11a.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
cdlemn11a.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
10 |
|
cdlemn11a.e |
⊢ 𝐸 = ( ( TEndo ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
|
cdlemn11a.i |
⊢ 𝐼 = ( ( DIsoB ‘ 𝐾 ) ‘ 𝑊 ) |
12 |
|
cdlemn11a.J |
⊢ 𝐽 = ( ( DIsoC ‘ 𝐾 ) ‘ 𝑊 ) |
13 |
|
cdlemn11a.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
14 |
|
cdlemn11a.d |
⊢ + = ( +g ‘ 𝑈 ) |
15 |
|
cdlemn11a.s |
⊢ ⊕ = ( LSSum ‘ 𝑈 ) |
16 |
|
cdlemn11a.f |
⊢ 𝐹 = ( ℩ ℎ ∈ 𝑇 ( ℎ ‘ 𝑃 ) = 𝑄 ) |
17 |
|
cdlemn11a.g |
⊢ 𝐺 = ( ℩ ℎ ∈ 𝑇 ( ℎ ‘ 𝑃 ) = 𝑁 ) |
18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
|
cdlemn11c |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐽 ‘ 𝑁 ) ⊆ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ 𝑋 ) ) ) → ∃ 𝑦 ∈ ( 𝐽 ‘ 𝑄 ) ∃ 𝑧 ∈ ( 𝐼 ‘ 𝑋 ) 〈 𝐺 , ( I ↾ 𝑇 ) 〉 = ( 𝑦 + 𝑧 ) ) |
19 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐽 ‘ 𝑁 ) ⊆ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ 𝑋 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
20 |
|
simp21 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐽 ‘ 𝑁 ) ⊆ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ 𝑋 ) ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
21 |
2 4 5 6 8 10 12 16
|
dicelval3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝑦 ∈ ( 𝐽 ‘ 𝑄 ) ↔ ∃ 𝑠 ∈ 𝐸 𝑦 = 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 ) ) |
22 |
19 20 21
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐽 ‘ 𝑁 ) ⊆ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ 𝑋 ) ) ) → ( 𝑦 ∈ ( 𝐽 ‘ 𝑄 ) ↔ ∃ 𝑠 ∈ 𝐸 𝑦 = 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 ) ) |
23 |
|
simp23 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐽 ‘ 𝑁 ) ⊆ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ 𝑋 ) ) ) → ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) |
24 |
1 2 5 8 9 7 11
|
dibelval3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) → ( 𝑧 ∈ ( 𝐼 ‘ 𝑋 ) ↔ ∃ 𝑔 ∈ 𝑇 ( 𝑧 = 〈 𝑔 , 𝑂 〉 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ) ) ) |
25 |
19 23 24
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐽 ‘ 𝑁 ) ⊆ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ 𝑋 ) ) ) → ( 𝑧 ∈ ( 𝐼 ‘ 𝑋 ) ↔ ∃ 𝑔 ∈ 𝑇 ( 𝑧 = 〈 𝑔 , 𝑂 〉 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ) ) ) |
26 |
22 25
|
anbi12d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐽 ‘ 𝑁 ) ⊆ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ 𝑋 ) ) ) → ( ( 𝑦 ∈ ( 𝐽 ‘ 𝑄 ) ∧ 𝑧 ∈ ( 𝐼 ‘ 𝑋 ) ) ↔ ( ∃ 𝑠 ∈ 𝐸 𝑦 = 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 ∧ ∃ 𝑔 ∈ 𝑇 ( 𝑧 = 〈 𝑔 , 𝑂 〉 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ) ) ) ) |
27 |
|
reeanv |
⊢ ( ∃ 𝑠 ∈ 𝐸 ∃ 𝑔 ∈ 𝑇 ( 𝑦 = 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 ∧ ( 𝑧 = 〈 𝑔 , 𝑂 〉 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ) ) ↔ ( ∃ 𝑠 ∈ 𝐸 𝑦 = 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 ∧ ∃ 𝑔 ∈ 𝑇 ( 𝑧 = 〈 𝑔 , 𝑂 〉 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ) ) ) |
28 |
|
simpl1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐽 ‘ 𝑁 ) ⊆ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ 𝑋 ) ) ) ∧ ( ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ∧ 〈 𝐺 , ( I ↾ 𝑇 ) 〉 = ( 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
29 |
|
simpl21 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐽 ‘ 𝑁 ) ⊆ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ 𝑋 ) ) ) ∧ ( ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ∧ 〈 𝐺 , ( I ↾ 𝑇 ) 〉 = ( 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
30 |
|
simpl22 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐽 ‘ 𝑁 ) ⊆ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ 𝑋 ) ) ) ∧ ( ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ∧ 〈 𝐺 , ( I ↾ 𝑇 ) 〉 = ( 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ) |
31 |
|
simpl23 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐽 ‘ 𝑁 ) ⊆ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ 𝑋 ) ) ) ∧ ( ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ∧ 〈 𝐺 , ( I ↾ 𝑇 ) 〉 = ( 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) |
32 |
|
simpr1r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐽 ‘ 𝑁 ) ⊆ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ 𝑋 ) ) ) ∧ ( ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ∧ 〈 𝐺 , ( I ↾ 𝑇 ) 〉 = ( 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → 𝑔 ∈ 𝑇 ) |
33 |
|
simpr1l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐽 ‘ 𝑁 ) ⊆ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ 𝑋 ) ) ) ∧ ( ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ∧ 〈 𝐺 , ( I ↾ 𝑇 ) 〉 = ( 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → 𝑠 ∈ 𝐸 ) |
34 |
|
simpr3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐽 ‘ 𝑁 ) ⊆ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ 𝑋 ) ) ) ∧ ( ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ∧ 〈 𝐺 , ( I ↾ 𝑇 ) 〉 = ( 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → 〈 𝐺 , ( I ↾ 𝑇 ) 〉 = ( 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) |
35 |
1 2 4 5 6 7 8 10 13 14 16 17
|
cdlemn9 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ) ∧ ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ∧ 〈 𝐺 , ( I ↾ 𝑇 ) 〉 = ( 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → ( 𝑔 ‘ 𝑄 ) = 𝑁 ) |
36 |
28 29 30 33 32 34 35
|
syl123anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐽 ‘ 𝑁 ) ⊆ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ 𝑋 ) ) ) ∧ ( ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ∧ 〈 𝐺 , ( I ↾ 𝑇 ) 〉 = ( 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → ( 𝑔 ‘ 𝑄 ) = 𝑁 ) |
37 |
|
simpr2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐽 ‘ 𝑁 ) ⊆ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ 𝑋 ) ) ) ∧ ( ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ∧ 〈 𝐺 , ( I ↾ 𝑇 ) 〉 = ( 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ) |
38 |
1 2 3 4 5 8 9
|
cdlemn10 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑔 ‘ 𝑄 ) = 𝑁 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ) ) → 𝑁 ≤ ( 𝑄 ∨ 𝑋 ) ) |
39 |
28 29 30 31 32 36 37 38
|
syl133anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐽 ‘ 𝑁 ) ⊆ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ 𝑋 ) ) ) ∧ ( ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ) ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ∧ 〈 𝐺 , ( I ↾ 𝑇 ) 〉 = ( 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) → 𝑁 ≤ ( 𝑄 ∨ 𝑋 ) ) |
40 |
39
|
3exp2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐽 ‘ 𝑁 ) ⊆ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ 𝑋 ) ) ) → ( ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ) → ( ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 → ( 〈 𝐺 , ( I ↾ 𝑇 ) 〉 = ( 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) → 𝑁 ≤ ( 𝑄 ∨ 𝑋 ) ) ) ) ) |
41 |
|
oveq12 |
⊢ ( ( 𝑦 = 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 ∧ 𝑧 = 〈 𝑔 , 𝑂 〉 ) → ( 𝑦 + 𝑧 ) = ( 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) |
42 |
41
|
eqeq2d |
⊢ ( ( 𝑦 = 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 ∧ 𝑧 = 〈 𝑔 , 𝑂 〉 ) → ( 〈 𝐺 , ( I ↾ 𝑇 ) 〉 = ( 𝑦 + 𝑧 ) ↔ 〈 𝐺 , ( I ↾ 𝑇 ) 〉 = ( 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) ) ) |
43 |
42
|
imbi1d |
⊢ ( ( 𝑦 = 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 ∧ 𝑧 = 〈 𝑔 , 𝑂 〉 ) → ( ( 〈 𝐺 , ( I ↾ 𝑇 ) 〉 = ( 𝑦 + 𝑧 ) → 𝑁 ≤ ( 𝑄 ∨ 𝑋 ) ) ↔ ( 〈 𝐺 , ( I ↾ 𝑇 ) 〉 = ( 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) → 𝑁 ≤ ( 𝑄 ∨ 𝑋 ) ) ) ) |
44 |
43
|
imbi2d |
⊢ ( ( 𝑦 = 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 ∧ 𝑧 = 〈 𝑔 , 𝑂 〉 ) → ( ( ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 → ( 〈 𝐺 , ( I ↾ 𝑇 ) 〉 = ( 𝑦 + 𝑧 ) → 𝑁 ≤ ( 𝑄 ∨ 𝑋 ) ) ) ↔ ( ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 → ( 〈 𝐺 , ( I ↾ 𝑇 ) 〉 = ( 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) → 𝑁 ≤ ( 𝑄 ∨ 𝑋 ) ) ) ) ) |
45 |
44
|
biimprd |
⊢ ( ( 𝑦 = 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 ∧ 𝑧 = 〈 𝑔 , 𝑂 〉 ) → ( ( ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 → ( 〈 𝐺 , ( I ↾ 𝑇 ) 〉 = ( 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) → 𝑁 ≤ ( 𝑄 ∨ 𝑋 ) ) ) → ( ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 → ( 〈 𝐺 , ( I ↾ 𝑇 ) 〉 = ( 𝑦 + 𝑧 ) → 𝑁 ≤ ( 𝑄 ∨ 𝑋 ) ) ) ) ) |
46 |
45
|
com23 |
⊢ ( ( 𝑦 = 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 ∧ 𝑧 = 〈 𝑔 , 𝑂 〉 ) → ( ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 → ( ( ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 → ( 〈 𝐺 , ( I ↾ 𝑇 ) 〉 = ( 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) → 𝑁 ≤ ( 𝑄 ∨ 𝑋 ) ) ) → ( 〈 𝐺 , ( I ↾ 𝑇 ) 〉 = ( 𝑦 + 𝑧 ) → 𝑁 ≤ ( 𝑄 ∨ 𝑋 ) ) ) ) ) |
47 |
46
|
impr |
⊢ ( ( 𝑦 = 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 ∧ ( 𝑧 = 〈 𝑔 , 𝑂 〉 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ) ) → ( ( ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 → ( 〈 𝐺 , ( I ↾ 𝑇 ) 〉 = ( 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) → 𝑁 ≤ ( 𝑄 ∨ 𝑋 ) ) ) → ( 〈 𝐺 , ( I ↾ 𝑇 ) 〉 = ( 𝑦 + 𝑧 ) → 𝑁 ≤ ( 𝑄 ∨ 𝑋 ) ) ) ) |
48 |
47
|
com12 |
⊢ ( ( ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 → ( 〈 𝐺 , ( I ↾ 𝑇 ) 〉 = ( 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 + 〈 𝑔 , 𝑂 〉 ) → 𝑁 ≤ ( 𝑄 ∨ 𝑋 ) ) ) → ( ( 𝑦 = 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 ∧ ( 𝑧 = 〈 𝑔 , 𝑂 〉 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ) ) → ( 〈 𝐺 , ( I ↾ 𝑇 ) 〉 = ( 𝑦 + 𝑧 ) → 𝑁 ≤ ( 𝑄 ∨ 𝑋 ) ) ) ) |
49 |
40 48
|
syl6 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐽 ‘ 𝑁 ) ⊆ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ 𝑋 ) ) ) → ( ( 𝑠 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇 ) → ( ( 𝑦 = 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 ∧ ( 𝑧 = 〈 𝑔 , 𝑂 〉 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ) ) → ( 〈 𝐺 , ( I ↾ 𝑇 ) 〉 = ( 𝑦 + 𝑧 ) → 𝑁 ≤ ( 𝑄 ∨ 𝑋 ) ) ) ) ) |
50 |
49
|
rexlimdvv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐽 ‘ 𝑁 ) ⊆ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ 𝑋 ) ) ) → ( ∃ 𝑠 ∈ 𝐸 ∃ 𝑔 ∈ 𝑇 ( 𝑦 = 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 ∧ ( 𝑧 = 〈 𝑔 , 𝑂 〉 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ) ) → ( 〈 𝐺 , ( I ↾ 𝑇 ) 〉 = ( 𝑦 + 𝑧 ) → 𝑁 ≤ ( 𝑄 ∨ 𝑋 ) ) ) ) |
51 |
27 50
|
syl5bir |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐽 ‘ 𝑁 ) ⊆ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ 𝑋 ) ) ) → ( ( ∃ 𝑠 ∈ 𝐸 𝑦 = 〈 ( 𝑠 ‘ 𝐹 ) , 𝑠 〉 ∧ ∃ 𝑔 ∈ 𝑇 ( 𝑧 = 〈 𝑔 , 𝑂 〉 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ) ) → ( 〈 𝐺 , ( I ↾ 𝑇 ) 〉 = ( 𝑦 + 𝑧 ) → 𝑁 ≤ ( 𝑄 ∨ 𝑋 ) ) ) ) |
52 |
26 51
|
sylbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐽 ‘ 𝑁 ) ⊆ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ 𝑋 ) ) ) → ( ( 𝑦 ∈ ( 𝐽 ‘ 𝑄 ) ∧ 𝑧 ∈ ( 𝐼 ‘ 𝑋 ) ) → ( 〈 𝐺 , ( I ↾ 𝑇 ) 〉 = ( 𝑦 + 𝑧 ) → 𝑁 ≤ ( 𝑄 ∨ 𝑋 ) ) ) ) |
53 |
52
|
rexlimdvv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐽 ‘ 𝑁 ) ⊆ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ 𝑋 ) ) ) → ( ∃ 𝑦 ∈ ( 𝐽 ‘ 𝑄 ) ∃ 𝑧 ∈ ( 𝐼 ‘ 𝑋 ) 〈 𝐺 , ( I ↾ 𝑇 ) 〉 = ( 𝑦 + 𝑧 ) → 𝑁 ≤ ( 𝑄 ∨ 𝑋 ) ) ) |
54 |
18 53
|
mpd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑁 ∈ 𝐴 ∧ ¬ 𝑁 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝐽 ‘ 𝑁 ) ⊆ ( ( 𝐽 ‘ 𝑄 ) ⊕ ( 𝐼 ‘ 𝑋 ) ) ) → 𝑁 ≤ ( 𝑄 ∨ 𝑋 ) ) |