Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemn10.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdlemn10.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cdlemn10.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cdlemn10.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
cdlemn10.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
cdlemn10.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
cdlemn10.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑔 ‘ 𝑄 ) = 𝑆 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ) ) → 𝐾 ∈ HL ) |
9 |
8
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑔 ‘ 𝑄 ) = 𝑆 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ) ) → 𝐾 ∈ Lat ) |
10 |
|
simp22l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑔 ‘ 𝑄 ) = 𝑆 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ) ) → 𝑆 ∈ 𝐴 ) |
11 |
1 4
|
atbase |
⊢ ( 𝑆 ∈ 𝐴 → 𝑆 ∈ 𝐵 ) |
12 |
10 11
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑔 ‘ 𝑄 ) = 𝑆 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ) ) → 𝑆 ∈ 𝐵 ) |
13 |
|
simp21l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑔 ‘ 𝑄 ) = 𝑆 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ) ) → 𝑄 ∈ 𝐴 ) |
14 |
1 3 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) → ( 𝑄 ∨ 𝑆 ) ∈ 𝐵 ) |
15 |
8 13 10 14
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑔 ‘ 𝑄 ) = 𝑆 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ) ) → ( 𝑄 ∨ 𝑆 ) ∈ 𝐵 ) |
16 |
1 4
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵 ) |
17 |
13 16
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑔 ‘ 𝑄 ) = 𝑆 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ) ) → 𝑄 ∈ 𝐵 ) |
18 |
|
simp23l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑔 ‘ 𝑄 ) = 𝑆 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ) ) → 𝑋 ∈ 𝐵 ) |
19 |
1 3
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑄 ∨ 𝑋 ) ∈ 𝐵 ) |
20 |
9 17 18 19
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑔 ‘ 𝑄 ) = 𝑆 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ) ) → ( 𝑄 ∨ 𝑋 ) ∈ 𝐵 ) |
21 |
2 3 4
|
hlatlej2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) → 𝑆 ≤ ( 𝑄 ∨ 𝑆 ) ) |
22 |
8 13 10 21
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑔 ‘ 𝑄 ) = 𝑆 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ) ) → 𝑆 ≤ ( 𝑄 ∨ 𝑆 ) ) |
23 |
|
simp1r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑔 ‘ 𝑄 ) = 𝑆 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ) ) → 𝑊 ∈ 𝐻 ) |
24 |
1 5
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵 ) |
25 |
23 24
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑔 ‘ 𝑄 ) = 𝑆 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ) ) → 𝑊 ∈ 𝐵 ) |
26 |
2 3 4
|
hlatlej1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) → 𝑄 ≤ ( 𝑄 ∨ 𝑆 ) ) |
27 |
8 13 10 26
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑔 ‘ 𝑄 ) = 𝑆 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ) ) → 𝑄 ≤ ( 𝑄 ∨ 𝑆 ) ) |
28 |
|
eqid |
⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) |
29 |
1 2 3 28 4
|
atmod3i1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑄 ∈ 𝐴 ∧ ( 𝑄 ∨ 𝑆 ) ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ∧ 𝑄 ≤ ( 𝑄 ∨ 𝑆 ) ) → ( 𝑄 ∨ ( ( 𝑄 ∨ 𝑆 ) ( meet ‘ 𝐾 ) 𝑊 ) ) = ( ( 𝑄 ∨ 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 ∨ 𝑊 ) ) ) |
30 |
8 13 15 25 27 29
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑔 ‘ 𝑄 ) = 𝑆 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ) ) → ( 𝑄 ∨ ( ( 𝑄 ∨ 𝑆 ) ( meet ‘ 𝐾 ) 𝑊 ) ) = ( ( 𝑄 ∨ 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 ∨ 𝑊 ) ) ) |
31 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑔 ‘ 𝑄 ) = 𝑆 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
32 |
|
simp21 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑔 ‘ 𝑄 ) = 𝑆 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
33 |
|
eqid |
⊢ ( 1. ‘ 𝐾 ) = ( 1. ‘ 𝐾 ) |
34 |
2 3 33 4 5
|
lhpjat2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝑄 ∨ 𝑊 ) = ( 1. ‘ 𝐾 ) ) |
35 |
31 32 34
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑔 ‘ 𝑄 ) = 𝑆 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ) ) → ( 𝑄 ∨ 𝑊 ) = ( 1. ‘ 𝐾 ) ) |
36 |
35
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑔 ‘ 𝑄 ) = 𝑆 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ) ) → ( ( 𝑄 ∨ 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 ∨ 𝑊 ) ) = ( ( 𝑄 ∨ 𝑆 ) ( meet ‘ 𝐾 ) ( 1. ‘ 𝐾 ) ) ) |
37 |
|
hlol |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OL ) |
38 |
8 37
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑔 ‘ 𝑄 ) = 𝑆 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ) ) → 𝐾 ∈ OL ) |
39 |
1 28 33
|
olm11 |
⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑄 ∨ 𝑆 ) ∈ 𝐵 ) → ( ( 𝑄 ∨ 𝑆 ) ( meet ‘ 𝐾 ) ( 1. ‘ 𝐾 ) ) = ( 𝑄 ∨ 𝑆 ) ) |
40 |
38 15 39
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑔 ‘ 𝑄 ) = 𝑆 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ) ) → ( ( 𝑄 ∨ 𝑆 ) ( meet ‘ 𝐾 ) ( 1. ‘ 𝐾 ) ) = ( 𝑄 ∨ 𝑆 ) ) |
41 |
30 36 40
|
3eqtrrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑔 ‘ 𝑄 ) = 𝑆 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ) ) → ( 𝑄 ∨ 𝑆 ) = ( 𝑄 ∨ ( ( 𝑄 ∨ 𝑆 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) |
42 |
|
simp31 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑔 ‘ 𝑄 ) = 𝑆 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ) ) → 𝑔 ∈ 𝑇 ) |
43 |
2 3 28 4 5 6 7
|
trlval2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑔 ∈ 𝑇 ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝑅 ‘ 𝑔 ) = ( ( 𝑄 ∨ ( 𝑔 ‘ 𝑄 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) |
44 |
31 42 32 43
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑔 ‘ 𝑄 ) = 𝑆 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ) ) → ( 𝑅 ‘ 𝑔 ) = ( ( 𝑄 ∨ ( 𝑔 ‘ 𝑄 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) |
45 |
|
simp32 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑔 ‘ 𝑄 ) = 𝑆 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ) ) → ( 𝑔 ‘ 𝑄 ) = 𝑆 ) |
46 |
45
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑔 ‘ 𝑄 ) = 𝑆 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ) ) → ( 𝑄 ∨ ( 𝑔 ‘ 𝑄 ) ) = ( 𝑄 ∨ 𝑆 ) ) |
47 |
46
|
oveq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑔 ‘ 𝑄 ) = 𝑆 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ) ) → ( ( 𝑄 ∨ ( 𝑔 ‘ 𝑄 ) ) ( meet ‘ 𝐾 ) 𝑊 ) = ( ( 𝑄 ∨ 𝑆 ) ( meet ‘ 𝐾 ) 𝑊 ) ) |
48 |
44 47
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑔 ‘ 𝑄 ) = 𝑆 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ) ) → ( 𝑅 ‘ 𝑔 ) = ( ( 𝑄 ∨ 𝑆 ) ( meet ‘ 𝐾 ) 𝑊 ) ) |
49 |
|
simp33 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑔 ‘ 𝑄 ) = 𝑆 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ) ) → ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ) |
50 |
48 49
|
eqbrtrrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑔 ‘ 𝑄 ) = 𝑆 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ) ) → ( ( 𝑄 ∨ 𝑆 ) ( meet ‘ 𝐾 ) 𝑊 ) ≤ 𝑋 ) |
51 |
1 28
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑄 ∨ 𝑆 ) ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( ( 𝑄 ∨ 𝑆 ) ( meet ‘ 𝐾 ) 𝑊 ) ∈ 𝐵 ) |
52 |
9 15 25 51
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑔 ‘ 𝑄 ) = 𝑆 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ) ) → ( ( 𝑄 ∨ 𝑆 ) ( meet ‘ 𝐾 ) 𝑊 ) ∈ 𝐵 ) |
53 |
1 2 3
|
latjlej2 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( ( 𝑄 ∨ 𝑆 ) ( meet ‘ 𝐾 ) 𝑊 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ) ) → ( ( ( 𝑄 ∨ 𝑆 ) ( meet ‘ 𝐾 ) 𝑊 ) ≤ 𝑋 → ( 𝑄 ∨ ( ( 𝑄 ∨ 𝑆 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ≤ ( 𝑄 ∨ 𝑋 ) ) ) |
54 |
9 52 18 17 53
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑔 ‘ 𝑄 ) = 𝑆 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ) ) → ( ( ( 𝑄 ∨ 𝑆 ) ( meet ‘ 𝐾 ) 𝑊 ) ≤ 𝑋 → ( 𝑄 ∨ ( ( 𝑄 ∨ 𝑆 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ≤ ( 𝑄 ∨ 𝑋 ) ) ) |
55 |
50 54
|
mpd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑔 ‘ 𝑄 ) = 𝑆 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ) ) → ( 𝑄 ∨ ( ( 𝑄 ∨ 𝑆 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ≤ ( 𝑄 ∨ 𝑋 ) ) |
56 |
41 55
|
eqbrtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑔 ‘ 𝑄 ) = 𝑆 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ) ) → ( 𝑄 ∨ 𝑆 ) ≤ ( 𝑄 ∨ 𝑋 ) ) |
57 |
1 2 9 12 15 20 22 56
|
lattrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊 ) ) ∧ ( 𝑔 ∈ 𝑇 ∧ ( 𝑔 ‘ 𝑄 ) = 𝑆 ∧ ( 𝑅 ‘ 𝑔 ) ≤ 𝑋 ) ) → 𝑆 ≤ ( 𝑄 ∨ 𝑋 ) ) |