Metamath Proof Explorer


Theorem cdlemn10

Description: Part of proof of Lemma N of Crawley p. 121 line 36. (Contributed by NM, 27-Feb-2014)

Ref Expression
Hypotheses cdlemn10.b 𝐵 = ( Base ‘ 𝐾 )
cdlemn10.l = ( le ‘ 𝐾 )
cdlemn10.j = ( join ‘ 𝐾 )
cdlemn10.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemn10.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemn10.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemn10.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
Assertion cdlemn10 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑔𝑇 ∧ ( 𝑔𝑄 ) = 𝑆 ∧ ( 𝑅𝑔 ) 𝑋 ) ) → 𝑆 ( 𝑄 𝑋 ) )

Proof

Step Hyp Ref Expression
1 cdlemn10.b 𝐵 = ( Base ‘ 𝐾 )
2 cdlemn10.l = ( le ‘ 𝐾 )
3 cdlemn10.j = ( join ‘ 𝐾 )
4 cdlemn10.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdlemn10.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdlemn10.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
7 cdlemn10.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
8 simp1l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑔𝑇 ∧ ( 𝑔𝑄 ) = 𝑆 ∧ ( 𝑅𝑔 ) 𝑋 ) ) → 𝐾 ∈ HL )
9 8 hllatd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑔𝑇 ∧ ( 𝑔𝑄 ) = 𝑆 ∧ ( 𝑅𝑔 ) 𝑋 ) ) → 𝐾 ∈ Lat )
10 simp22l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑔𝑇 ∧ ( 𝑔𝑄 ) = 𝑆 ∧ ( 𝑅𝑔 ) 𝑋 ) ) → 𝑆𝐴 )
11 1 4 atbase ( 𝑆𝐴𝑆𝐵 )
12 10 11 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑔𝑇 ∧ ( 𝑔𝑄 ) = 𝑆 ∧ ( 𝑅𝑔 ) 𝑋 ) ) → 𝑆𝐵 )
13 simp21l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑔𝑇 ∧ ( 𝑔𝑄 ) = 𝑆 ∧ ( 𝑅𝑔 ) 𝑋 ) ) → 𝑄𝐴 )
14 1 3 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑄𝐴𝑆𝐴 ) → ( 𝑄 𝑆 ) ∈ 𝐵 )
15 8 13 10 14 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑔𝑇 ∧ ( 𝑔𝑄 ) = 𝑆 ∧ ( 𝑅𝑔 ) 𝑋 ) ) → ( 𝑄 𝑆 ) ∈ 𝐵 )
16 1 4 atbase ( 𝑄𝐴𝑄𝐵 )
17 13 16 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑔𝑇 ∧ ( 𝑔𝑄 ) = 𝑆 ∧ ( 𝑅𝑔 ) 𝑋 ) ) → 𝑄𝐵 )
18 simp23l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑔𝑇 ∧ ( 𝑔𝑄 ) = 𝑆 ∧ ( 𝑅𝑔 ) 𝑋 ) ) → 𝑋𝐵 )
19 1 3 latjcl ( ( 𝐾 ∈ Lat ∧ 𝑄𝐵𝑋𝐵 ) → ( 𝑄 𝑋 ) ∈ 𝐵 )
20 9 17 18 19 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑔𝑇 ∧ ( 𝑔𝑄 ) = 𝑆 ∧ ( 𝑅𝑔 ) 𝑋 ) ) → ( 𝑄 𝑋 ) ∈ 𝐵 )
21 2 3 4 hlatlej2 ( ( 𝐾 ∈ HL ∧ 𝑄𝐴𝑆𝐴 ) → 𝑆 ( 𝑄 𝑆 ) )
22 8 13 10 21 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑔𝑇 ∧ ( 𝑔𝑄 ) = 𝑆 ∧ ( 𝑅𝑔 ) 𝑋 ) ) → 𝑆 ( 𝑄 𝑆 ) )
23 simp1r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑔𝑇 ∧ ( 𝑔𝑄 ) = 𝑆 ∧ ( 𝑅𝑔 ) 𝑋 ) ) → 𝑊𝐻 )
24 1 5 lhpbase ( 𝑊𝐻𝑊𝐵 )
25 23 24 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑔𝑇 ∧ ( 𝑔𝑄 ) = 𝑆 ∧ ( 𝑅𝑔 ) 𝑋 ) ) → 𝑊𝐵 )
26 2 3 4 hlatlej1 ( ( 𝐾 ∈ HL ∧ 𝑄𝐴𝑆𝐴 ) → 𝑄 ( 𝑄 𝑆 ) )
27 8 13 10 26 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑔𝑇 ∧ ( 𝑔𝑄 ) = 𝑆 ∧ ( 𝑅𝑔 ) 𝑋 ) ) → 𝑄 ( 𝑄 𝑆 ) )
28 eqid ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 )
29 1 2 3 28 4 atmod3i1 ( ( 𝐾 ∈ HL ∧ ( 𝑄𝐴 ∧ ( 𝑄 𝑆 ) ∈ 𝐵𝑊𝐵 ) ∧ 𝑄 ( 𝑄 𝑆 ) ) → ( 𝑄 ( ( 𝑄 𝑆 ) ( meet ‘ 𝐾 ) 𝑊 ) ) = ( ( 𝑄 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 𝑊 ) ) )
30 8 13 15 25 27 29 syl131anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑔𝑇 ∧ ( 𝑔𝑄 ) = 𝑆 ∧ ( 𝑅𝑔 ) 𝑋 ) ) → ( 𝑄 ( ( 𝑄 𝑆 ) ( meet ‘ 𝐾 ) 𝑊 ) ) = ( ( 𝑄 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 𝑊 ) ) )
31 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑔𝑇 ∧ ( 𝑔𝑄 ) = 𝑆 ∧ ( 𝑅𝑔 ) 𝑋 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
32 simp21 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑔𝑇 ∧ ( 𝑔𝑄 ) = 𝑆 ∧ ( 𝑅𝑔 ) 𝑋 ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
33 eqid ( 1. ‘ 𝐾 ) = ( 1. ‘ 𝐾 )
34 2 3 33 4 5 lhpjat2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝑄 𝑊 ) = ( 1. ‘ 𝐾 ) )
35 31 32 34 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑔𝑇 ∧ ( 𝑔𝑄 ) = 𝑆 ∧ ( 𝑅𝑔 ) 𝑋 ) ) → ( 𝑄 𝑊 ) = ( 1. ‘ 𝐾 ) )
36 35 oveq2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑔𝑇 ∧ ( 𝑔𝑄 ) = 𝑆 ∧ ( 𝑅𝑔 ) 𝑋 ) ) → ( ( 𝑄 𝑆 ) ( meet ‘ 𝐾 ) ( 𝑄 𝑊 ) ) = ( ( 𝑄 𝑆 ) ( meet ‘ 𝐾 ) ( 1. ‘ 𝐾 ) ) )
37 hlol ( 𝐾 ∈ HL → 𝐾 ∈ OL )
38 8 37 syl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑔𝑇 ∧ ( 𝑔𝑄 ) = 𝑆 ∧ ( 𝑅𝑔 ) 𝑋 ) ) → 𝐾 ∈ OL )
39 1 28 33 olm11 ( ( 𝐾 ∈ OL ∧ ( 𝑄 𝑆 ) ∈ 𝐵 ) → ( ( 𝑄 𝑆 ) ( meet ‘ 𝐾 ) ( 1. ‘ 𝐾 ) ) = ( 𝑄 𝑆 ) )
40 38 15 39 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑔𝑇 ∧ ( 𝑔𝑄 ) = 𝑆 ∧ ( 𝑅𝑔 ) 𝑋 ) ) → ( ( 𝑄 𝑆 ) ( meet ‘ 𝐾 ) ( 1. ‘ 𝐾 ) ) = ( 𝑄 𝑆 ) )
41 30 36 40 3eqtrrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑔𝑇 ∧ ( 𝑔𝑄 ) = 𝑆 ∧ ( 𝑅𝑔 ) 𝑋 ) ) → ( 𝑄 𝑆 ) = ( 𝑄 ( ( 𝑄 𝑆 ) ( meet ‘ 𝐾 ) 𝑊 ) ) )
42 simp31 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑔𝑇 ∧ ( 𝑔𝑄 ) = 𝑆 ∧ ( 𝑅𝑔 ) 𝑋 ) ) → 𝑔𝑇 )
43 2 3 28 4 5 6 7 trlval2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑔𝑇 ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝑅𝑔 ) = ( ( 𝑄 ( 𝑔𝑄 ) ) ( meet ‘ 𝐾 ) 𝑊 ) )
44 31 42 32 43 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑔𝑇 ∧ ( 𝑔𝑄 ) = 𝑆 ∧ ( 𝑅𝑔 ) 𝑋 ) ) → ( 𝑅𝑔 ) = ( ( 𝑄 ( 𝑔𝑄 ) ) ( meet ‘ 𝐾 ) 𝑊 ) )
45 simp32 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑔𝑇 ∧ ( 𝑔𝑄 ) = 𝑆 ∧ ( 𝑅𝑔 ) 𝑋 ) ) → ( 𝑔𝑄 ) = 𝑆 )
46 45 oveq2d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑔𝑇 ∧ ( 𝑔𝑄 ) = 𝑆 ∧ ( 𝑅𝑔 ) 𝑋 ) ) → ( 𝑄 ( 𝑔𝑄 ) ) = ( 𝑄 𝑆 ) )
47 46 oveq1d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑔𝑇 ∧ ( 𝑔𝑄 ) = 𝑆 ∧ ( 𝑅𝑔 ) 𝑋 ) ) → ( ( 𝑄 ( 𝑔𝑄 ) ) ( meet ‘ 𝐾 ) 𝑊 ) = ( ( 𝑄 𝑆 ) ( meet ‘ 𝐾 ) 𝑊 ) )
48 44 47 eqtrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑔𝑇 ∧ ( 𝑔𝑄 ) = 𝑆 ∧ ( 𝑅𝑔 ) 𝑋 ) ) → ( 𝑅𝑔 ) = ( ( 𝑄 𝑆 ) ( meet ‘ 𝐾 ) 𝑊 ) )
49 simp33 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑔𝑇 ∧ ( 𝑔𝑄 ) = 𝑆 ∧ ( 𝑅𝑔 ) 𝑋 ) ) → ( 𝑅𝑔 ) 𝑋 )
50 48 49 eqbrtrrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑔𝑇 ∧ ( 𝑔𝑄 ) = 𝑆 ∧ ( 𝑅𝑔 ) 𝑋 ) ) → ( ( 𝑄 𝑆 ) ( meet ‘ 𝐾 ) 𝑊 ) 𝑋 )
51 1 28 latmcl ( ( 𝐾 ∈ Lat ∧ ( 𝑄 𝑆 ) ∈ 𝐵𝑊𝐵 ) → ( ( 𝑄 𝑆 ) ( meet ‘ 𝐾 ) 𝑊 ) ∈ 𝐵 )
52 9 15 25 51 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑔𝑇 ∧ ( 𝑔𝑄 ) = 𝑆 ∧ ( 𝑅𝑔 ) 𝑋 ) ) → ( ( 𝑄 𝑆 ) ( meet ‘ 𝐾 ) 𝑊 ) ∈ 𝐵 )
53 1 2 3 latjlej2 ( ( 𝐾 ∈ Lat ∧ ( ( ( 𝑄 𝑆 ) ( meet ‘ 𝐾 ) 𝑊 ) ∈ 𝐵𝑋𝐵𝑄𝐵 ) ) → ( ( ( 𝑄 𝑆 ) ( meet ‘ 𝐾 ) 𝑊 ) 𝑋 → ( 𝑄 ( ( 𝑄 𝑆 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( 𝑄 𝑋 ) ) )
54 9 52 18 17 53 syl13anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑔𝑇 ∧ ( 𝑔𝑄 ) = 𝑆 ∧ ( 𝑅𝑔 ) 𝑋 ) ) → ( ( ( 𝑄 𝑆 ) ( meet ‘ 𝐾 ) 𝑊 ) 𝑋 → ( 𝑄 ( ( 𝑄 𝑆 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( 𝑄 𝑋 ) ) )
55 50 54 mpd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑔𝑇 ∧ ( 𝑔𝑄 ) = 𝑆 ∧ ( 𝑅𝑔 ) 𝑋 ) ) → ( 𝑄 ( ( 𝑄 𝑆 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( 𝑄 𝑋 ) )
56 41 55 eqbrtrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑔𝑇 ∧ ( 𝑔𝑄 ) = 𝑆 ∧ ( 𝑅𝑔 ) 𝑋 ) ) → ( 𝑄 𝑆 ) ( 𝑄 𝑋 ) )
57 1 2 9 12 15 20 22 56 lattrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑋𝐵𝑋 𝑊 ) ) ∧ ( 𝑔𝑇 ∧ ( 𝑔𝑄 ) = 𝑆 ∧ ( 𝑅𝑔 ) 𝑋 ) ) → 𝑆 ( 𝑄 𝑋 ) )